Radial Transformer for Large-Scale Outdoor LiDAR Point Cloud Semantic Segmentation

Semantic segmentation of large-scale outdoor point cloud captured by light detection and ranging (LiDAR) sensors can provide fine-grain and stereoscopic comprehension for the surrounding environment. However, limited by the receptive field of convolution kernel and ignoration of specific spatial pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12
Hauptverfasser: He, Xiang, Li, Xu, Ni, Peizhou, Xu, Wang, Xu, Qimin, Liu, Xixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semantic segmentation of large-scale outdoor point cloud captured by light detection and ranging (LiDAR) sensors can provide fine-grain and stereoscopic comprehension for the surrounding environment. However, limited by the receptive field of convolution kernel and ignoration of specific spatial properties inherent to the large-scale outdoor point cloud, the existing advanced LiDAR semantic segmentation methods inevitably abandon the unique radial long-range topological relationships. To this end, from the LiDAR perspective, we propose a novel Radial Transformer that can naturally and efficiently exploit the radial long-range dependencies exclusive to the outdoor point cloud for accurate LiDAR semantic segmentation. Specifically, we first develop a radial window partition to generate a series of candidate point sequences and then construct the long-range interactions among the densely continuous point sequences by the self-attention mechanism. Moreover, considering the varying-distance distribution of point cloud in 3-D space, a spatial-adaptive position encoding is particularly designed to elaborate the relative position. Furthermore, we fusion radial balanced attention for a better structure representation of real-world scenes and distant points. Extensive experiments demonstrate the effectiveness and superiority of our method, which achieves 67.5% and 77.7% mean intersection-over-union (mIoU) on two recognized large-scale outdoor LiDAR point cloud datasets SemanticKITTI and nuScenes, respectively.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2024.3492008