Construction of Multi-solitons for a Generalized Derivative Nonlinear Schrödinger Equation

We consider a derivative nonlinear Schrödinger equation with general nonlinearlity: i ∂ t u + ∂ x 2 u + i | u | 2 σ ∂ x u = 0 , In Tang and Xu (J Differ Equ 264(6):4094–4135, 2018), the authors prove the stability of two solitary waves in energy space for σ ∈ ( 1 , 2 ) . As a consequence, there exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2024-12, Vol.36 (4), p.3281-3309
1. Verfasser: Van Tin, Phan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a derivative nonlinear Schrödinger equation with general nonlinearlity: i ∂ t u + ∂ x 2 u + i | u | 2 σ ∂ x u = 0 , In Tang and Xu (J Differ Equ 264(6):4094–4135, 2018), the authors prove the stability of two solitary waves in energy space for σ ∈ ( 1 , 2 ) . As a consequence, there exists a solution of the above equation which is close arbitrary to sum of two solitons in energy space when σ ∈ ( 1 , 2 ) . Our goal in this paper is proving the existence of multi-solitons in energy space for σ ⩾ 3 2 . Our proofs proceed by fixed point arguments around the desired profile, using Strichartz estimates.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-023-10247-5