Construction of Multi-solitons for a Generalized Derivative Nonlinear Schrödinger Equation
We consider a derivative nonlinear Schrödinger equation with general nonlinearlity: i ∂ t u + ∂ x 2 u + i | u | 2 σ ∂ x u = 0 , In Tang and Xu (J Differ Equ 264(6):4094–4135, 2018), the authors prove the stability of two solitary waves in energy space for σ ∈ ( 1 , 2 ) . As a consequence, there exis...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2024-12, Vol.36 (4), p.3281-3309 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a derivative nonlinear Schrödinger equation with general nonlinearlity:
i
∂
t
u
+
∂
x
2
u
+
i
|
u
|
2
σ
∂
x
u
=
0
,
In Tang and Xu (J Differ Equ 264(6):4094–4135, 2018), the authors prove the stability of two solitary waves in energy space for
σ
∈
(
1
,
2
)
. As a consequence, there exists a solution of the above equation which is close arbitrary to sum of two solitons in energy space when
σ
∈
(
1
,
2
)
. Our goal in this paper is proving the existence of multi-solitons in energy space for
σ
⩾
3
2
. Our proofs proceed by fixed point arguments around the desired profile, using Strichartz estimates. |
---|---|
ISSN: | 1040-7294 1572-9222 |
DOI: | 10.1007/s10884-023-10247-5 |