Learning Fast Deployment for UAV-Assisted Disaster System

Unmanned aerial vehicle (UAV)-assisted systems have attracted a lot of attention due to its high probability of line-of-sight (LoS) connections and flexible deployment. In this paper, we aim to minimize the upload time required for the UAV to collect information from the sensor nodes in disaster sce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2024/10/01, Vol.E107.D(10), pp.1367-1371
Hauptverfasser: XING, Na, LI, Lu, ZHANG, Ye, YANG, Shiyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unmanned aerial vehicle (UAV)-assisted systems have attracted a lot of attention due to its high probability of line-of-sight (LoS) connections and flexible deployment. In this paper, we aim to minimize the upload time required for the UAV to collect information from the sensor nodes in disaster scenario, while optimizing the deployment position of UAV. In order to get the deployment solution quickly, a data-driven approach is proposed in which an optimization strategy acts as the expert. Considering that images could capture the spatial configurations well, we use a convolutional neural network (CNN) to learn how to place the UAV. In the end, the simulation results demonstrate the effectiveness and generalization of the proposed method. After training, our CNN can generate UAV configuration faster than the general optimization-based algorithm.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2023EDL8082