Optimal stopping for Markov processes with positive jumps

Consider the discounted optimal stopping problem for a real valued Markov process with only positive jumps. We provide a theorem to verify that the optimal stopping region has the form {x >= x^*} for some critical threshold x^*, and a representation formula for the value function of the problem i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Crocce, Fabian, Mordecki, Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the discounted optimal stopping problem for a real valued Markov process with only positive jumps. We provide a theorem to verify that the optimal stopping region has the form {x >= x^*} for some critical threshold x^*, and a representation formula for the value function of the problem in terms of the Green kernel of the process, based on Dynkin's characterization of the value function as the least excessive majorant. As an application of our results, using the Fourier transform to compute the Green kernel of the process, we solve a new example: the optimal stopping for a Levy-driven Ornstein-Uhlenbeck process used to model prices in electricity markets.
ISSN:2331-8422