Quantitative Imaging of \(^{55}\text{Co}\) and \(^{18}\text{F}\)-Labeled Tracers in a Single "Multiplexed" PET Imaging Session
In this study, we explore the use of Co-55 as a radioisotope for multiplexed PET (mPET) by utilizing its emission of a prompt gamma-ray in cascade with a positron during decay. We leverage the prompt-gamma signal to generate triple coincidences for a Co-55-labeled tracer, allowing us to distinguish...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we explore the use of Co-55 as a radioisotope for multiplexed PET (mPET) by utilizing its emission of a prompt gamma-ray in cascade with a positron during decay. We leverage the prompt-gamma signal to generate triple coincidences for a Co-55-labeled tracer, allowing us to distinguish it from a tracer labeled with a pure positron emitter, such as F-18. By employing triple versus double coincidence detection and signal processing methodology, we successfully separate the Co-55 signal from that of F-18. Phantom studies were conducted to establish the correlation between Co-55 double and triple coincidence counts and Co-55 activity. Additionally, we demonstrate the potential for quantifying hot spots within a warm background produced by both Co-55 and F-18 signals in a single PET scan. Finally, we showcase the ability to simultaneously image two tracers in vivo in a single PET session with mouse models of cancer. |
---|---|
ISSN: | 2331-8422 |