A finite-resource description of a measurement process and its implications for the "Wigner's Friend" scenario

Quantum mechanics started out as a theory to describe the smallest scales of energy in Nature. After hundred years of development it is now routinely employed to describe, for example, quantum computers with thousands of qubits. This tremendous progress turns the debate of foundational questions int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: de Melo, Fernando, Gabriel Dias Carvalho, Correia, Pedro S, Paola Concha Obando, de Oliveira, Thiago R, Vallejos, Raúl O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum mechanics started out as a theory to describe the smallest scales of energy in Nature. After hundred years of development it is now routinely employed to describe, for example, quantum computers with thousands of qubits. This tremendous progress turns the debate of foundational questions into a technological imperative. In what follows we introduce a model of a quantum measurement process that consistently includes the impact of having access only to finite resources when describing a macroscopic system, like a measurement apparatus. Leveraging modern tools from equilibration of closed systems and typicality, we show how the collapse can be seen as an effective description of a closed dynamics, of which we do not know all its details. Our model is then exploited to address the ``Wigner Friend Scenario'', and we observe that an agreement is reached when both Wigner and his friend acknowledge their finite resources perspective and describe the measurement process accordingly.
ISSN:2331-8422