Quantitative bounds in the nonlinear Roth theorem

We show that there exists c > 0 such that any subset of { 1 , … , N } of density at least ( log log N ) − c contains a nontrivial progression of the form x , x + y , x + y 2 . This is the first quantitatively effective version of the Bergelson–Leibman polynomial Szemerédi theorem for a progressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2024-12, Vol.238 (3), p.865-903
Hauptverfasser: Peluse, Sarah, Prendiville, Sean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that there exists c > 0 such that any subset of { 1 , … , N } of density at least ( log log N ) − c contains a nontrivial progression of the form x , x + y , x + y 2 . This is the first quantitatively effective version of the Bergelson–Leibman polynomial Szemerédi theorem for a progression involving polynomials of differing degrees. Our key innovation is an inverse theorem characterising sets for which the number of configurations x , x + y , x + y 2 deviates substantially from the expected value. In proving this, we develop the first effective instance of a concatenation theorem of Tao and Ziegler, with polynomial bounds.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-024-01293-x