Quantitative bounds in the nonlinear Roth theorem
We show that there exists c > 0 such that any subset of { 1 , … , N } of density at least ( log log N ) − c contains a nontrivial progression of the form x , x + y , x + y 2 . This is the first quantitatively effective version of the Bergelson–Leibman polynomial Szemerédi theorem for a progressio...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2024-12, Vol.238 (3), p.865-903 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that there exists
c
>
0
such that any subset of
{
1
,
…
,
N
}
of density at least
(
log
log
N
)
−
c
contains a nontrivial progression of the form
x
,
x
+
y
,
x
+
y
2
. This is the first quantitatively effective version of the Bergelson–Leibman polynomial Szemerédi theorem for a progression involving polynomials of differing degrees. Our key innovation is an inverse theorem characterising sets for which the number of configurations
x
,
x
+
y
,
x
+
y
2
deviates substantially from the expected value. In proving this, we develop the first effective instance of a concatenation theorem of Tao and Ziegler, with polynomial bounds. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-024-01293-x |