SMC-SRGAN-Lightning super-resolution algorithm based on optical micro-scanning thermal microscope image

Due to the low spatial resolution of the existing optical micro-scanning thermal microscope imaging system, the acquired micro-scanning infrared images have inferior image quality and low contrast. Deep learning methods, represented by SRGAN, have shown promising results in super-resolution. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Visual computer 2024-12, Vol.40 (12), p.8441-8454
Hauptverfasser: Gao, Meijing, Bai, Yang, Xie, Yunjia, Zhang, Bozhi, Li, Shiyu, Li, Zhilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the low spatial resolution of the existing optical micro-scanning thermal microscope imaging system, the acquired micro-scanning infrared images have inferior image quality and low contrast. Deep learning methods, represented by SRGAN, have shown promising results in super-resolution. However, this method still has artifacts, blurriness, low spatial resolution, and slow reconstruction speed. Therefore, we propose the SMC-SRGAN-Lightning super-resolution algorithm based on optical micro-scanning thermal microscope images in this study. Firstly, we enhance the model’s attention to features and improve the details and clarity of the reconstructed images. Removing the BN layer in residual blocks, replacing the ReLU with SMU, and introducing the CBAM to construct the SMC module. Secondly, we incorporate the attention mechanism SEnet into the Bottleneck structure of MobileNetV2. Reducing the channels in the first 1 × 1 convolution layer to 1/4 and creating the SE-MobileNetV2 module. It can enhance the model’s focus on essential features, computational efficiency, and accuracy. Finally, to validate the effectiveness of our method, we compare it with four other super-resolution algorithms on public datasets and images obtained from the optical micro-scanning thermal microscope imaging system. Experimental results indicate that our method improves image clarity, preserving details, and textures. Comprehensively considering super-resolved image quality and time costs, our method is superior to other methods.
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-023-03247-5