Kempner-like Harmonic Series
Inspired by a question asked on the list mathfun, we revisit Kempner-like series, i.e., harmonic sums...1/n where the integers n in the summation have "restricted" digits. First we give a short proof that limk→∞(... = 2 log 2, where s2(n) is the sum of the binary digits of the integer n. T...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2024-10, Vol.131 (9), p.775-783 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by a question asked on the list mathfun, we revisit Kempner-like series, i.e., harmonic sums...1/n where the integers n in the summation have "restricted" digits. First we give a short proof that limk→∞(... = 2 log 2, where s2(n) is the sum of the binary digits of the integer n. Then we give a generalization that addresses the case where s2(n) is replaced with sb(n), the sum of b-ary digits in base b: we prove that limk→∞... = (2 log b)/(b − 1). Finally we indicate that other generalizations could be studied: the sum of digits in base 2 could be replaced with, e.g., the function a11(n) of -possibly overlapping- 11 in the base-2 expansion of n, for which one can obtain limk→∞... 1/n = 4 log 2. (ProQuest: ... denotes formulae omited.) |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.1080/00029890.2024.2380232 |