Euler’s Beta formula on nonuniform lattices and its applications

In this article, we obtain the analogue of Euler’s Beta formula on nonuniform lattices x ( z ) = c 1 z 2 + c 2 z + c 3 or x ( z ) = c ~ 1 q z + c ~ 2 q - z + c ~ 3 , which has independent significance. Some important applications of Euler Beta formula on nonuniform lattices help us to solve the gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2024-12, Vol.65 (4), p.1579-1605
1. Verfasser: Cheng, Jinfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we obtain the analogue of Euler’s Beta formula on nonuniform lattices x ( z ) = c 1 z 2 + c 2 z + c 3 or x ( z ) = c ~ 1 q z + c ~ 2 q - z + c ~ 3 , which has independent significance. Some important applications of Euler Beta formula on nonuniform lattices help us to solve the generalized Abel integral equation and define fractional sum and difference on nonuniform lattices effectively. In addition, the most interesting application is that we can use fractional calculus on nonuniform lattices to get solutions of hypergeometric difference equations on nonuniform lattices.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-024-00929-z