Sidon–Ramsey and Bh-Ramsey numbers

For a given positive integer k , the Sidon–Ramsey number SR ( k ) is defined as the minimum value of n such that, in every partition of the set [1,  n ] into k parts, there exists a part that contains two distinct pairs of numbers with the same sum, i.e., one of the parts is not a Sidon set. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2024, Vol.30 (3)
Hauptverfasser: Espinosa-García, Manuel A., Montejano, Amanda, Roldán-Pensado, Edgardo, Suárez, J. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given positive integer k , the Sidon–Ramsey number SR ( k ) is defined as the minimum value of n such that, in every partition of the set [1,  n ] into k parts, there exists a part that contains two distinct pairs of numbers with the same sum, i.e., one of the parts is not a Sidon set. In this paper, we investigate the asymptotic behavior of this parameter and two generalizations of it. The first generalization involves replacing pairs of numbers with h -tuples, such that in every partition of [1,  n ] into k parts, there exists a part that contains two distinct h -tuples with the same sum, i.e., there is a part that is not a B h set. The second generalization considers the scenario where the interval [1,  n ] is substituted with a d -dimensional box of the form ∏ i = 1 d [ 1 , n i ] . For the general case of h ≥ 3 and d -dimensional boxes, before applying our method to obtain the Ramsey-type result, we establish an upper bound for the corresponding density parameter.
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-024-00676-7