Dehn filling and the knot group III: cyclic persistent subgroups

Property P is equivalent to saying that for every non-trivial knot K , its meridian remains non-trivial for all non-trivial Dehn fillings. We call a non-trivial element g in the knot group G ( K ) persistent if it remains non-trivial for all non-trivial Dehn fillings. The purpose of this note is to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2024-11, Vol.30 (3), Article 99
Hauptverfasser: Ito, Tetsuya, Motegi, Kimihiko, Teragaito, Masakazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Property P is equivalent to saying that for every non-trivial knot K , its meridian remains non-trivial for all non-trivial Dehn fillings. We call a non-trivial element g in the knot group G ( K ) persistent if it remains non-trivial for all non-trivial Dehn fillings. The purpose of this note is to show that K has no finite surgery if and only if G ( K ) contains infinitely many, mutually non-conjugate cyclic subgroups whose non-trivial elements are persistent.
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-024-00674-9