Dehn filling and the knot group III: cyclic persistent subgroups
Property P is equivalent to saying that for every non-trivial knot K , its meridian remains non-trivial for all non-trivial Dehn fillings. We call a non-trivial element g in the knot group G ( K ) persistent if it remains non-trivial for all non-trivial Dehn fillings. The purpose of this note is to...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2024-11, Vol.30 (3), Article 99 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Property P is equivalent to saying that for every non-trivial knot
K
, its meridian remains non-trivial for all non-trivial Dehn fillings. We call a non-trivial element
g
in the knot group
G
(
K
)
persistent
if it remains non-trivial for all non-trivial Dehn fillings. The purpose of this note is to show that
K
has no finite surgery if and only if
G
(
K
) contains infinitely many, mutually non-conjugate cyclic subgroups whose non-trivial elements are persistent. |
---|---|
ISSN: | 1405-213X 2296-4495 |
DOI: | 10.1007/s40590-024-00674-9 |