Drag reduction of blunt body in hypersonic regime using afterbody modifications
One of the major challenges for researchers in hypersonic flow is to reduce and optimize the drag that occurs when a body is in continuous interaction with fluids. The effects of drag are relatively lower when the body is moving at slower speeds but as the relative motion between the fluid and the b...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the major challenges for researchers in hypersonic flow is to reduce and optimize the drag that occurs when a body is in continuous interaction with fluids. The effects of drag are relatively lower when the body is moving at slower speeds but as the relative motion between the fluid and the body increases, the drag and heat generation increases rapidly. Geometrical modifications are one of the ways to reduce the drag on the afterbody in hypersonic flow. In this paper a series of numerical simulations are carried out on a 2-D axisymmetric model of a blunt module. The stepped, conical, cylindrical and end cavity after bodies are simulated and their drag values are evaluated and compared. Finally, this paper will help the researchers to study the effect of drag on different geometries and optimally choose the best suited geometry according to their requirements. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0178773 |