Lie minimal Weingarten surfaces

We consider Lie minimal surfaces, the critical points of the simplest Lie sphere invariant energy, in Riemannian space forms. These surfaces can be characterized via their Euler-Lagrange equations, which take the form of differential equations of the principal curvatures. Surfaces with constant mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Cho, Joseph, Hara, Masaya, Denis, Polly, Tada, Tomohiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Lie minimal surfaces, the critical points of the simplest Lie sphere invariant energy, in Riemannian space forms. These surfaces can be characterized via their Euler-Lagrange equations, which take the form of differential equations of the principal curvatures. Surfaces with constant mean curvature that satisfy these equations turn out to be rotational in their space form. We generalize in flat ambient space: here surfaces where the principal curvatures satisfy an affine relationship as well as elliptic linear Weingarten surfaces are rotational as well.
ISSN:2331-8422