THE HOMOGENEOUS q-DIFFERENCE OPERATOR AND THE RELATED POLYNOMIALS

We create the homogeneous q-difference operator [~.E](a, b; [theta]) as an extension of the exponential operator [epsilon](b[theta]). A new polynomials [h.sub.n](a, b, x|[q.sup.-1]) are defined as an extension of the [q.sup.-1]-Rogers-Szego polynomial [h.sub.n](a, b|[q.sup.-1]). We provide an operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TWMS journal of applied and engineering mathematics 2023-01, Vol.13 (4), p.1537
Hauptverfasser: Arif, M.A, Saad, H.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We create the homogeneous q-difference operator [~.E](a, b; [theta]) as an extension of the exponential operator [epsilon](b[theta]). A new polynomials [h.sub.n](a, b, x|[q.sup.-1]) are defined as an extension of the [q.sup.-1]-Rogers-Szego polynomial [h.sub.n](a, b|[q.sup.-1]). We provide an operator proof of the generating function and its extension, Rogers formula and the invers linearization formula, and Mehler's formula for the polynomials [h.sub.n](a,b|[q.sup.-1]). The generating function and its extension, Rogers formula and the invers linearization formula, and Mehler's formula for the polynomials [h.sub.n](a, b|[q.sup.-1]) are deduced by giving special values to parameters of a new polynomial [h.sub.n](a, b, x|[q.sup.-1]). Keywords: the homogeneous q-difference operator, the [q.sup.-1]-Rogers-Szego polynomial, the generating function, the Rogers formula, the invers linearization formula, the Mehler's formula. AMS Subject Classification: 05A30, 33D45.
ISSN:2146-1147
2146-1147