APPROXIMATION BY NONLINEAR q-BERNSTEIN-CHLODOWSKY OPERATORS
Max-Product algebra is new direction in constructive approximation of functions by operators. In this study, we introduce the q-analog of Bernstein-Chlodowsky operators using max-product algebra and investigate approximation properties of a sequence of these operators. Also, an upper estimate of the...
Gespeichert in:
Veröffentlicht in: | TWMS journal of applied and engineering mathematics 2024-01, Vol.14 (1), p.42 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Max-Product algebra is new direction in constructive approximation of functions by operators. In this study, we introduce the q-analog of Bernstein-Chlodowsky operators using max-product algebra and investigate approximation properties of a sequence of these operators. Also, an upper estimate of the approximation error of the form C[[omega].sub.1](f; 1[??]) with C > 0 obvious constant is obtained. Keywords: q-integers, nonlinear operators, Bernstein-Chlodowsky operators. AMS Subject Classification: 41A30, 41A46, 41A25. |
---|---|
ISSN: | 2146-1147 2146-1147 |