APPROXIMATION BY NONLINEAR q-BERNSTEIN-CHLODOWSKY OPERATORS

Max-Product algebra is new direction in constructive approximation of functions by operators. In this study, we introduce the q-analog of Bernstein-Chlodowsky operators using max-product algebra and investigate approximation properties of a sequence of these operators. Also, an upper estimate of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TWMS journal of applied and engineering mathematics 2024-01, Vol.14 (1), p.42
Hauptverfasser: Acar, Ecem, Serenbay, Sevilay Kirci
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Max-Product algebra is new direction in constructive approximation of functions by operators. In this study, we introduce the q-analog of Bernstein-Chlodowsky operators using max-product algebra and investigate approximation properties of a sequence of these operators. Also, an upper estimate of the approximation error of the form C[[omega].sub.1](f; 1[??]) with C > 0 obvious constant is obtained. Keywords: q-integers, nonlinear operators, Bernstein-Chlodowsky operators. AMS Subject Classification: 41A30, 41A46, 41A25.
ISSN:2146-1147
2146-1147