FURTHER RESULTS ON K-PRODUCT CORDIAL LABELING
Let f be a map from V(G) to {0,1,..., k - 1} where k is an integer, 1 [less than or equal to] k [less than or equal to] |V(G)|. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if |[v.sub.f](i) - [v.sub.f](j)| [less than or equal to] 1, and |[e.sub.f](i) -...
Gespeichert in:
Veröffentlicht in: | TWMS journal of applied and engineering mathematics 2024-07, Vol.14 (3), p.981 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f be a map from V(G) to {0,1,..., k - 1} where k is an integer, 1 [less than or equal to] k [less than or equal to] |V(G)|. For each edge uv assign the label f(u)f(v)(mod k). f is called a k-product cordial labeling if |[v.sub.f](i) - [v.sub.f](j)| [less than or equal to] 1, and |[e.sub.f](i) - [e.sub.f](j)| [less than or equal to] 1, i,j [member of] {0,1,..., k - 1}, where [v.sub.f] (x) and [e.sub.f] (x) denote the number of vertices and edges respectively labeled with x (x = 0, 1,...,k - 1). In this paper, we investigate the k-product cordial behaviour of G + [??]. In addition, we find an upper bound of the size of connected k-product cordial graphs. KEYWORDS: Cordial labeling, product cordial labeling, k-product cordial labeling, 4-product cordial graph. |
---|---|
ISSN: | 2146-1147 2146-1147 |