Reducing data resolution for better super-resolution: Reconstructing turbulent flows from noisy observation

A super-resolution (SR) method for the reconstruction of Navier-Stokes (NS) flows from noisy observations is presented. In the SR method, first the observation data is averaged over a coarse grid to reduce the noise at the expense of losing resolution and, then, a dynamic observer is employed to rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Yeo, Kyongmin, Zimoń, Małgorzata J, Zayats, Mykhaylo, Zhuk, Sergiy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A super-resolution (SR) method for the reconstruction of Navier-Stokes (NS) flows from noisy observations is presented. In the SR method, first the observation data is averaged over a coarse grid to reduce the noise at the expense of losing resolution and, then, a dynamic observer is employed to reconstruct the flow field by reversing back the lost information. We provide a theoretical analysis, which indicates a chaos synchronization of the SR observer with the reference NS flow. It is shown that, even with noisy observations, the SR observer converges toward the reference NS flow exponentially fast, and the deviation of the observer from the reference system is bounded. Counter-intuitively, our theoretical analysis shows that the deviation can be reduced by increasing the lengthscale of the spatial average, i.e., making the resolution coarser. The theoretical analysis is confirmed by numerical experiments of two-dimensional NS flows. The numerical experiments suggest that there is a critical lengthscale for the spatial average, below which making the resolution coarser improves the reconstruction.
ISSN:2331-8422