Unraveling Dual Mechanisms in Quasi‐Layered Bi2O2Se via Defect Modulation for High‐Performance Aqueous Zn‐Ion Batteries

Developing cathode materials for aqueous zinc‐ion batteries (ZIBs) that offer high capacity, rapid charge–discharge rates, and prolonged cycle life remains a significant challenge. This study explores the use of zipper‐type Bi2O2Se nanoplates modified by selenium vacancy (Vse) modulation, which redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (46), p.n/a
Hauptverfasser: Hsieh, Yi‐Yen, Chuang, Yu‐Chun, Tuan, Hsing‐Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 34
creator Hsieh, Yi‐Yen
Chuang, Yu‐Chun
Tuan, Hsing‐Yu
description Developing cathode materials for aqueous zinc‐ion batteries (ZIBs) that offer high capacity, rapid charge–discharge rates, and prolonged cycle life remains a significant challenge. This study explores the use of zipper‐type Bi2O2Se nanoplates modified by selenium vacancy (Vse) modulation, which reduces electron scattering, enhances carrier mobility in [Bi2O2] conducting channels, and decreases coulombic interactions within electrostatic layers. The introduction of Se vacancies facilitates electron transfer from the host to [Bi2O2] channels and reduces scattering in the [Bi2O2] framework, thus improving carrier mobility. These Se‐poor Bi2O2Se nanoplates demonstrate a greater affinity for zinc ions, reduced diffusion barriers, and faster transport kinetics, which enable more efficient Zn‐ion insertion, tripling the electrochemical capacity, improving rate capabilities, and extending cycling life. Enhancements such as reinforced structural integrity and expanded interlayer spaces support a dual Zn‐ion‐driven mechanism involving both insertion and conversion reactions, essential for superior electrochemical storage performance. The results include an impressive discharge/charge capacity of 380.3 mA h g−1 at 0.1 A g−1, a cycle life of up to 10 000 cycles at 5 A g−1, and a current tolerance exceeding 10 A g−1. This research highlights how nano‐ and defect engineering of Bi2O2Se can significantly enhance ionic conductivity, expedite electron transfer, and improve Zn‐ion diffusion. A quasi‐layered Bi2O2Se, featuring high‐carrier‐mobility [Bi2O2] conducting channels and reactive selenium vacancy (VSe) layers, enhances structural stability, reduces carrier scattering, and promotes high Zn‐affinity, leading to abundant Zn insertion, and effective conversion reactions between Zn ions and Se atoms during cycling.
doi_str_mv 10.1002/adfm.202406975
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3126696097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126696097</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1635-640d55151d12bd60112870bd614d7c7c523588320a5b32161f6afabdf51287c33</originalsourceid><addsrcrecordid>eNo9kMtOAjEUhhujiYhuXTdxDfYy7cwsuYiQQNAoiXHTlGkHSmY62M5gWJj4CD6jT2IJhtX5T853bj8Atxh1MULkXqq87BJEIsTTmJ2BFuaYdygiyflJ47dLcOX9BiEcxzRqga-FdXKnC2NXcNjIAs50tpbW-NJDY-FzI735_f6Zyr12WsG-IXPyouHOSDjUuc5qOKtUU8jaVBbmlYNjs1qHhiftQlZKm2nY-2h01Xj4bkNhEri-rGvtjPbX4CKXhdc3_7ENFqOH18G4M50_Tga9aWeLOWUdHiHFGGZYYbJUHGFMkhgFhSMVZ3HGCGVJQgmSbElJeDXnMpdLlbMDmFHaBnfHuVtXhWN8LTZV42xYKSgmnKccpXGg0iP1aQq9F1tnSun2AiNx8Fcc_BUnf0VvOJqdMvoHGitzgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126696097</pqid></control><display><type>article</type><title>Unraveling Dual Mechanisms in Quasi‐Layered Bi2O2Se via Defect Modulation for High‐Performance Aqueous Zn‐Ion Batteries</title><source>Wiley Online Library All Journals</source><creator>Hsieh, Yi‐Yen ; Chuang, Yu‐Chun ; Tuan, Hsing‐Yu</creator><creatorcontrib>Hsieh, Yi‐Yen ; Chuang, Yu‐Chun ; Tuan, Hsing‐Yu</creatorcontrib><description>Developing cathode materials for aqueous zinc‐ion batteries (ZIBs) that offer high capacity, rapid charge–discharge rates, and prolonged cycle life remains a significant challenge. This study explores the use of zipper‐type Bi2O2Se nanoplates modified by selenium vacancy (Vse) modulation, which reduces electron scattering, enhances carrier mobility in [Bi2O2] conducting channels, and decreases coulombic interactions within electrostatic layers. The introduction of Se vacancies facilitates electron transfer from the host to [Bi2O2] channels and reduces scattering in the [Bi2O2] framework, thus improving carrier mobility. These Se‐poor Bi2O2Se nanoplates demonstrate a greater affinity for zinc ions, reduced diffusion barriers, and faster transport kinetics, which enable more efficient Zn‐ion insertion, tripling the electrochemical capacity, improving rate capabilities, and extending cycling life. Enhancements such as reinforced structural integrity and expanded interlayer spaces support a dual Zn‐ion‐driven mechanism involving both insertion and conversion reactions, essential for superior electrochemical storage performance. The results include an impressive discharge/charge capacity of 380.3 mA h g−1 at 0.1 A g−1, a cycle life of up to 10 000 cycles at 5 A g−1, and a current tolerance exceeding 10 A g−1. This research highlights how nano‐ and defect engineering of Bi2O2Se can significantly enhance ionic conductivity, expedite electron transfer, and improve Zn‐ion diffusion. A quasi‐layered Bi2O2Se, featuring high‐carrier‐mobility [Bi2O2] conducting channels and reactive selenium vacancy (VSe) layers, enhances structural stability, reduces carrier scattering, and promotes high Zn‐affinity, leading to abundant Zn insertion, and effective conversion reactions between Zn ions and Se atoms during cycling.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202406975</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>aqueous batteries ; Batteries ; Carrier mobility ; Channels ; Chemical reactions ; Defects ; Diffusion barriers ; Diffusion rate ; Discharge ; Electrode materials ; Electron transfer ; Insertion ; Interlayers ; Ion currents ; Ion diffusion ; Modulation ; quasi‐layered ; Scattering ; Se vacancy ; Selenium ; Structural integrity ; Zinc ; zinc ion battery</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (46), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2819-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202406975$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202406975$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hsieh, Yi‐Yen</creatorcontrib><creatorcontrib>Chuang, Yu‐Chun</creatorcontrib><creatorcontrib>Tuan, Hsing‐Yu</creatorcontrib><title>Unraveling Dual Mechanisms in Quasi‐Layered Bi2O2Se via Defect Modulation for High‐Performance Aqueous Zn‐Ion Batteries</title><title>Advanced functional materials</title><description>Developing cathode materials for aqueous zinc‐ion batteries (ZIBs) that offer high capacity, rapid charge–discharge rates, and prolonged cycle life remains a significant challenge. This study explores the use of zipper‐type Bi2O2Se nanoplates modified by selenium vacancy (Vse) modulation, which reduces electron scattering, enhances carrier mobility in [Bi2O2] conducting channels, and decreases coulombic interactions within electrostatic layers. The introduction of Se vacancies facilitates electron transfer from the host to [Bi2O2] channels and reduces scattering in the [Bi2O2] framework, thus improving carrier mobility. These Se‐poor Bi2O2Se nanoplates demonstrate a greater affinity for zinc ions, reduced diffusion barriers, and faster transport kinetics, which enable more efficient Zn‐ion insertion, tripling the electrochemical capacity, improving rate capabilities, and extending cycling life. Enhancements such as reinforced structural integrity and expanded interlayer spaces support a dual Zn‐ion‐driven mechanism involving both insertion and conversion reactions, essential for superior electrochemical storage performance. The results include an impressive discharge/charge capacity of 380.3 mA h g−1 at 0.1 A g−1, a cycle life of up to 10 000 cycles at 5 A g−1, and a current tolerance exceeding 10 A g−1. This research highlights how nano‐ and defect engineering of Bi2O2Se can significantly enhance ionic conductivity, expedite electron transfer, and improve Zn‐ion diffusion. A quasi‐layered Bi2O2Se, featuring high‐carrier‐mobility [Bi2O2] conducting channels and reactive selenium vacancy (VSe) layers, enhances structural stability, reduces carrier scattering, and promotes high Zn‐affinity, leading to abundant Zn insertion, and effective conversion reactions between Zn ions and Se atoms during cycling.</description><subject>aqueous batteries</subject><subject>Batteries</subject><subject>Carrier mobility</subject><subject>Channels</subject><subject>Chemical reactions</subject><subject>Defects</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Electron transfer</subject><subject>Insertion</subject><subject>Interlayers</subject><subject>Ion currents</subject><subject>Ion diffusion</subject><subject>Modulation</subject><subject>quasi‐layered</subject><subject>Scattering</subject><subject>Se vacancy</subject><subject>Selenium</subject><subject>Structural integrity</subject><subject>Zinc</subject><subject>zinc ion battery</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOAjEUhhujiYhuXTdxDfYy7cwsuYiQQNAoiXHTlGkHSmY62M5gWJj4CD6jT2IJhtX5T853bj8Atxh1MULkXqq87BJEIsTTmJ2BFuaYdygiyflJ47dLcOX9BiEcxzRqga-FdXKnC2NXcNjIAs50tpbW-NJDY-FzI735_f6Zyr12WsG-IXPyouHOSDjUuc5qOKtUU8jaVBbmlYNjs1qHhiftQlZKm2nY-2h01Xj4bkNhEri-rGvtjPbX4CKXhdc3_7ENFqOH18G4M50_Tga9aWeLOWUdHiHFGGZYYbJUHGFMkhgFhSMVZ3HGCGVJQgmSbElJeDXnMpdLlbMDmFHaBnfHuVtXhWN8LTZV42xYKSgmnKccpXGg0iP1aQq9F1tnSun2AiNx8Fcc_BUnf0VvOJqdMvoHGitzgg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hsieh, Yi‐Yen</creator><creator>Chuang, Yu‐Chun</creator><creator>Tuan, Hsing‐Yu</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2819-2270</orcidid></search><sort><creationdate>20241101</creationdate><title>Unraveling Dual Mechanisms in Quasi‐Layered Bi2O2Se via Defect Modulation for High‐Performance Aqueous Zn‐Ion Batteries</title><author>Hsieh, Yi‐Yen ; Chuang, Yu‐Chun ; Tuan, Hsing‐Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1635-640d55151d12bd60112870bd614d7c7c523588320a5b32161f6afabdf51287c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>aqueous batteries</topic><topic>Batteries</topic><topic>Carrier mobility</topic><topic>Channels</topic><topic>Chemical reactions</topic><topic>Defects</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Electron transfer</topic><topic>Insertion</topic><topic>Interlayers</topic><topic>Ion currents</topic><topic>Ion diffusion</topic><topic>Modulation</topic><topic>quasi‐layered</topic><topic>Scattering</topic><topic>Se vacancy</topic><topic>Selenium</topic><topic>Structural integrity</topic><topic>Zinc</topic><topic>zinc ion battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Yi‐Yen</creatorcontrib><creatorcontrib>Chuang, Yu‐Chun</creatorcontrib><creatorcontrib>Tuan, Hsing‐Yu</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Yi‐Yen</au><au>Chuang, Yu‐Chun</au><au>Tuan, Hsing‐Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling Dual Mechanisms in Quasi‐Layered Bi2O2Se via Defect Modulation for High‐Performance Aqueous Zn‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>46</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing cathode materials for aqueous zinc‐ion batteries (ZIBs) that offer high capacity, rapid charge–discharge rates, and prolonged cycle life remains a significant challenge. This study explores the use of zipper‐type Bi2O2Se nanoplates modified by selenium vacancy (Vse) modulation, which reduces electron scattering, enhances carrier mobility in [Bi2O2] conducting channels, and decreases coulombic interactions within electrostatic layers. The introduction of Se vacancies facilitates electron transfer from the host to [Bi2O2] channels and reduces scattering in the [Bi2O2] framework, thus improving carrier mobility. These Se‐poor Bi2O2Se nanoplates demonstrate a greater affinity for zinc ions, reduced diffusion barriers, and faster transport kinetics, which enable more efficient Zn‐ion insertion, tripling the electrochemical capacity, improving rate capabilities, and extending cycling life. Enhancements such as reinforced structural integrity and expanded interlayer spaces support a dual Zn‐ion‐driven mechanism involving both insertion and conversion reactions, essential for superior electrochemical storage performance. The results include an impressive discharge/charge capacity of 380.3 mA h g−1 at 0.1 A g−1, a cycle life of up to 10 000 cycles at 5 A g−1, and a current tolerance exceeding 10 A g−1. This research highlights how nano‐ and defect engineering of Bi2O2Se can significantly enhance ionic conductivity, expedite electron transfer, and improve Zn‐ion diffusion. A quasi‐layered Bi2O2Se, featuring high‐carrier‐mobility [Bi2O2] conducting channels and reactive selenium vacancy (VSe) layers, enhances structural stability, reduces carrier scattering, and promotes high Zn‐affinity, leading to abundant Zn insertion, and effective conversion reactions between Zn ions and Se atoms during cycling.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202406975</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2819-2270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (46), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3126696097
source Wiley Online Library All Journals
subjects aqueous batteries
Batteries
Carrier mobility
Channels
Chemical reactions
Defects
Diffusion barriers
Diffusion rate
Discharge
Electrode materials
Electron transfer
Insertion
Interlayers
Ion currents
Ion diffusion
Modulation
quasi‐layered
Scattering
Se vacancy
Selenium
Structural integrity
Zinc
zinc ion battery
title Unraveling Dual Mechanisms in Quasi‐Layered Bi2O2Se via Defect Modulation for High‐Performance Aqueous Zn‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20Dual%20Mechanisms%20in%20Quasi%E2%80%90Layered%20Bi2O2Se%20via%20Defect%20Modulation%20for%20High%E2%80%90Performance%20Aqueous%20Zn%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Hsieh,%20Yi%E2%80%90Yen&rft.date=2024-11-01&rft.volume=34&rft.issue=46&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202406975&rft_dat=%3Cproquest_wiley%3E3126696097%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126696097&rft_id=info:pmid/&rfr_iscdi=true