Unraveling Dual Mechanisms in Quasi‐Layered Bi2O2Se via Defect Modulation for High‐Performance Aqueous Zn‐Ion Batteries

Developing cathode materials for aqueous zinc‐ion batteries (ZIBs) that offer high capacity, rapid charge–discharge rates, and prolonged cycle life remains a significant challenge. This study explores the use of zipper‐type Bi2O2Se nanoplates modified by selenium vacancy (Vse) modulation, which redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11, Vol.34 (46), p.n/a
Hauptverfasser: Hsieh, Yi‐Yen, Chuang, Yu‐Chun, Tuan, Hsing‐Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing cathode materials for aqueous zinc‐ion batteries (ZIBs) that offer high capacity, rapid charge–discharge rates, and prolonged cycle life remains a significant challenge. This study explores the use of zipper‐type Bi2O2Se nanoplates modified by selenium vacancy (Vse) modulation, which reduces electron scattering, enhances carrier mobility in [Bi2O2] conducting channels, and decreases coulombic interactions within electrostatic layers. The introduction of Se vacancies facilitates electron transfer from the host to [Bi2O2] channels and reduces scattering in the [Bi2O2] framework, thus improving carrier mobility. These Se‐poor Bi2O2Se nanoplates demonstrate a greater affinity for zinc ions, reduced diffusion barriers, and faster transport kinetics, which enable more efficient Zn‐ion insertion, tripling the electrochemical capacity, improving rate capabilities, and extending cycling life. Enhancements such as reinforced structural integrity and expanded interlayer spaces support a dual Zn‐ion‐driven mechanism involving both insertion and conversion reactions, essential for superior electrochemical storage performance. The results include an impressive discharge/charge capacity of 380.3 mA h g−1 at 0.1 A g−1, a cycle life of up to 10 000 cycles at 5 A g−1, and a current tolerance exceeding 10 A g−1. This research highlights how nano‐ and defect engineering of Bi2O2Se can significantly enhance ionic conductivity, expedite electron transfer, and improve Zn‐ion diffusion. A quasi‐layered Bi2O2Se, featuring high‐carrier‐mobility [Bi2O2] conducting channels and reactive selenium vacancy (VSe) layers, enhances structural stability, reduces carrier scattering, and promotes high Zn‐affinity, leading to abundant Zn insertion, and effective conversion reactions between Zn ions and Se atoms during cycling.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202406975