Efficient removal of rhodamine B dye using myrrh-based magnetized multi-walled carbon nanotubes as adsorbent

A novel strategy was used to successfully remove rhodamine B dye from contaminated water by combining magnetized multi-walled carbon nanotubes (MWCNTs) with myrrh gum as an adsorbent. The shape and structure of the prepared adsorbent were charecterized using X-ray powder diffraction analysis, FTIR,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adsorption : journal of the International Adsorption Society 2024-12, Vol.30 (8), p.1925-1936
Hauptverfasser: Hussain, Mushtaq, Hussaini, Syed Sulaiman, Shariq, Mohammad, Althikrallah, Hanan A., Al-Qasmi, Noha, Seku, Kondaiah, Kazi, Shabbir Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel strategy was used to successfully remove rhodamine B dye from contaminated water by combining magnetized multi-walled carbon nanotubes (MWCNTs) with myrrh gum as an adsorbent. The shape and structure of the prepared adsorbent were charecterized using X-ray powder diffraction analysis, FTIR, SEM, and TEM. A batch approach was used to study the effect of the adsorbent on rhodamine B removal, and several variables were considered, including pH, agitation time, and adsorbent dosage. The findings revealed that rhodamine B dye removal was best at a basic pH of 8, with a 0.05 g adsorbent dosage, within 30 min. Different models were utilized to analyze the isotherm data obtained during the investigations. The adsorbent exhibited the highest adsorption capacity for rhodamine B removal, reaching 332.22 mg/g. The regression analysis indicated appropriate adsorption kinetics with a pseudo-second order kinetics and an R 2 value of 0.999. The thermodynamic analysis specified that the removal process exhibits endothermic characteristics, spontaneous behavior, and involves chemisorption. The obtained results demonstrate the efficacy of the adsorbent in the context of water treatment.
ISSN:0929-5607
1572-8757
DOI:10.1007/s10450-024-00533-z