Research on the correlation between teacher classroom questioning types and student thinking development from the perspective of discourse analysis
Discourse analysis, as a mainstream research method in classroom teaching, has gained widespread attention in education. Educators believe that children's thinking development requires support from interactive discourse. In this study, four primary school mathematics classes were segmented base...
Gespeichert in:
Veröffentlicht in: | Instructional science 2024-12, Vol.52 (6), p.997-1019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discourse analysis, as a mainstream research method in classroom teaching, has gained widespread attention in education. Educators believe that children's thinking development requires support from interactive discourse. In this study, four primary school mathematics classes were segmented based on the form, frequency, content, and purpose of teacher-student interactions. A total of 73 dialogue segments were selected for coding, resulting in 338 codes. The coding process was based on the turn of talk and assigned corresponding coding numbers to the content of teacher-student discourse in the fragments according to the Bloom-Turney teaching questioning code list and the Hierarchical Framework of Student Thinking Level based on Biggs-Collis Structure of the observed learning outcome. The results show that Knowledge level question (Q1), Understanding level question (Q2), Application level question (Q3), Synthesis level question (Q5), and Evaluation level question (Q6) are related to students' low-level thinking. The questions of Analysis level (Q4), Synthesis level (Q5), and Evaluation level (Q6) are related to students' high-level thinking. We found that there are variety of interactive structures between teachers and students in the question and answer session, among which three interaction structures show significant performance, namely Q2 → M (Multiple-point structural level) → Q4 → C (Correlational structural level), Q3 → M → Q4 → C, Q3 → M → Q6 → A (Abstract-extension level), these structures can show how teachers timely adjust the types of questions according to students' answers to improve students' thinking level. |
---|---|
ISSN: | 0020-4277 1573-1952 |
DOI: | 10.1007/s11251-024-09683-7 |