CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network
The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2024-11, Vol.275 (1), p.16 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16 |
container_title | The Astrophysical journal. Supplement series |
container_volume | 275 |
creator | Chen, Qingyang Lin, Hong Qiang, Zhenping Liu, Hui Ji, Kaifan Shang, Zhenhong |
description | The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results. |
doi_str_mv | 10.3847/1538-4365/ad7eb9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3126413265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_db3896ec193a42318e063de2719602be</doaj_id><sourcerecordid>3126413265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-e1492d57fc4bbac41ee3a49866349805bee596d1485b3bf6036234a17fab7333</originalsourceid><addsrcrecordid>eNp1UU1P3DAQtapW6pb23qMlrqTYGX_Ex3bFFiQ-Ltsea9nxpMpi4mBni_j3zRIEJy4zmqc3b0bvEfKVs2_QCH3KJTSVACVPXdDozTuyeoHekxVjSleMCfORfCplxxjTEsyK_FlfndHfGFPbT49002MMdO1iu49u6tNAr1LASH-4goHOoxvor6HsR8z_-gO0zW4oXcp3mOnNOPWti3QT0wO9xukh5dvP5EPnYsEvz_2IbDdn2_V5dXnz82L9_bJqa6mnCrkwdZC6a4X3rhUcEZwwjVIwVyY9ojQqcNFID75TDFQNwnHdOa8B4IhcLLIhuZ0dc3_n8qNNrrdPQMp_rcvzdxFt8NAYhS0384UaeINMQcBac6NY7XHWOl60xpzu91gmu0v7PMzfW-C1EhxqJWcWW1htTqVk7F6ucmYPgdiD-_bgvl0CmVdOlpU-ja-ab9L_Awz2i1c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126413265</pqid></control><display><type>article</type><title>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Chen, Qingyang ; Lin, Hong ; Qiang, Zhenping ; Liu, Hui ; Ji, Kaifan ; Shang, Zhenhong</creator><creatorcontrib>Chen, Qingyang ; Lin, Hong ; Qiang, Zhenping ; Liu, Hui ; Ji, Kaifan ; Shang, Zhenhong</creatorcontrib><description>The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ad7eb9</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Algorithms ; Brightness ; Coronal mass ejection ; Datasets ; Feature extraction ; Fluid motion ; High altitude ; Machine learning ; Modules ; Motion perception ; Movement ; Observatories ; Optical flow (image analysis) ; Real time ; Solar active region velocity fields ; Space weather ; Unsupervised learning ; Velocity ; Velocity distribution</subject><ispartof>The Astrophysical journal. Supplement series, 2024-11, Vol.275 (1), p.16</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-e1492d57fc4bbac41ee3a49866349805bee596d1485b3bf6036234a17fab7333</cites><orcidid>0000-0001-8950-3875 ; 0009-0006-0548-8334 ; 0000-0003-2714-6811 ; 0000-0003-3494-482X ; 0000-0002-5630-9408 ; 0000-0003-1280-5255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ad7eb9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Chen, Qingyang</creatorcontrib><creatorcontrib>Lin, Hong</creatorcontrib><creatorcontrib>Qiang, Zhenping</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Ji, Kaifan</creatorcontrib><creatorcontrib>Shang, Zhenhong</creatorcontrib><title>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.</description><subject>Algorithms</subject><subject>Brightness</subject><subject>Coronal mass ejection</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Fluid motion</subject><subject>High altitude</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Motion perception</subject><subject>Movement</subject><subject>Observatories</subject><subject>Optical flow (image analysis)</subject><subject>Real time</subject><subject>Solar active region velocity fields</subject><subject>Space weather</subject><subject>Unsupervised learning</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1P3DAQtapW6pb23qMlrqTYGX_Ex3bFFiQ-Ltsea9nxpMpi4mBni_j3zRIEJy4zmqc3b0bvEfKVs2_QCH3KJTSVACVPXdDozTuyeoHekxVjSleMCfORfCplxxjTEsyK_FlfndHfGFPbT49002MMdO1iu49u6tNAr1LASH-4goHOoxvor6HsR8z_-gO0zW4oXcp3mOnNOPWti3QT0wO9xukh5dvP5EPnYsEvz_2IbDdn2_V5dXnz82L9_bJqa6mnCrkwdZC6a4X3rhUcEZwwjVIwVyY9ojQqcNFID75TDFQNwnHdOa8B4IhcLLIhuZ0dc3_n8qNNrrdPQMp_rcvzdxFt8NAYhS0384UaeINMQcBac6NY7XHWOl60xpzu91gmu0v7PMzfW-C1EhxqJWcWW1htTqVk7F6ucmYPgdiD-_bgvl0CmVdOlpU-ja-ab9L_Awz2i1c</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chen, Qingyang</creator><creator>Lin, Hong</creator><creator>Qiang, Zhenping</creator><creator>Liu, Hui</creator><creator>Ji, Kaifan</creator><creator>Shang, Zhenhong</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8950-3875</orcidid><orcidid>https://orcid.org/0009-0006-0548-8334</orcidid><orcidid>https://orcid.org/0000-0003-2714-6811</orcidid><orcidid>https://orcid.org/0000-0003-3494-482X</orcidid><orcidid>https://orcid.org/0000-0002-5630-9408</orcidid><orcidid>https://orcid.org/0000-0003-1280-5255</orcidid></search><sort><creationdate>20241101</creationdate><title>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</title><author>Chen, Qingyang ; Lin, Hong ; Qiang, Zhenping ; Liu, Hui ; Ji, Kaifan ; Shang, Zhenhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-e1492d57fc4bbac41ee3a49866349805bee596d1485b3bf6036234a17fab7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brightness</topic><topic>Coronal mass ejection</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Fluid motion</topic><topic>High altitude</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Motion perception</topic><topic>Movement</topic><topic>Observatories</topic><topic>Optical flow (image analysis)</topic><topic>Real time</topic><topic>Solar active region velocity fields</topic><topic>Space weather</topic><topic>Unsupervised learning</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qingyang</creatorcontrib><creatorcontrib>Lin, Hong</creatorcontrib><creatorcontrib>Qiang, Zhenping</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Ji, Kaifan</creatorcontrib><creatorcontrib>Shang, Zhenhong</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qingyang</au><au>Lin, Hong</au><au>Qiang, Zhenping</au><au>Liu, Hui</au><au>Ji, Kaifan</au><au>Shang, Zhenhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>275</volume><issue>1</issue><spage>16</spage><pages>16-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ad7eb9</doi><orcidid>https://orcid.org/0000-0001-8950-3875</orcidid><orcidid>https://orcid.org/0009-0006-0548-8334</orcidid><orcidid>https://orcid.org/0000-0003-2714-6811</orcidid><orcidid>https://orcid.org/0000-0003-3494-482X</orcidid><orcidid>https://orcid.org/0000-0002-5630-9408</orcidid><orcidid>https://orcid.org/0000-0003-1280-5255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0067-0049 |
ispartof | The Astrophysical journal. Supplement series, 2024-11, Vol.275 (1), p.16 |
issn | 0067-0049 1538-4365 |
language | eng |
recordid | cdi_proquest_journals_3126413265 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection |
subjects | Algorithms Brightness Coronal mass ejection Datasets Feature extraction Fluid motion High altitude Machine learning Modules Motion perception Movement Observatories Optical flow (image analysis) Real time Solar active region velocity fields Space weather Unsupervised learning Velocity Velocity distribution |
title | CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CME%20Velocity%20Field%20Calculation%20Model%20Based%20on%20an%20Unsupervised%20Transformer%20Optical%20Flow%20Network&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Chen,%20Qingyang&rft.date=2024-11-01&rft.volume=275&rft.issue=1&rft.spage=16&rft.pages=16-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ad7eb9&rft_dat=%3Cproquest_doaj_%3E3126413265%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126413265&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_db3896ec193a42318e063de2719602be&rfr_iscdi=true |