CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network

The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2024-11, Vol.275 (1), p.16
Hauptverfasser: Chen, Qingyang, Lin, Hong, Qiang, Zhenping, Liu, Hui, Ji, Kaifan, Shang, Zhenhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 16
container_title The Astrophysical journal. Supplement series
container_volume 275
creator Chen, Qingyang
Lin, Hong
Qiang, Zhenping
Liu, Hui
Ji, Kaifan
Shang, Zhenhong
description The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.
doi_str_mv 10.3847/1538-4365/ad7eb9
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3126413265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_db3896ec193a42318e063de2719602be</doaj_id><sourcerecordid>3126413265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-e1492d57fc4bbac41ee3a49866349805bee596d1485b3bf6036234a17fab7333</originalsourceid><addsrcrecordid>eNp1UU1P3DAQtapW6pb23qMlrqTYGX_Ex3bFFiQ-Ltsea9nxpMpi4mBni_j3zRIEJy4zmqc3b0bvEfKVs2_QCH3KJTSVACVPXdDozTuyeoHekxVjSleMCfORfCplxxjTEsyK_FlfndHfGFPbT49002MMdO1iu49u6tNAr1LASH-4goHOoxvor6HsR8z_-gO0zW4oXcp3mOnNOPWti3QT0wO9xukh5dvP5EPnYsEvz_2IbDdn2_V5dXnz82L9_bJqa6mnCrkwdZC6a4X3rhUcEZwwjVIwVyY9ojQqcNFID75TDFQNwnHdOa8B4IhcLLIhuZ0dc3_n8qNNrrdPQMp_rcvzdxFt8NAYhS0384UaeINMQcBac6NY7XHWOl60xpzu91gmu0v7PMzfW-C1EhxqJWcWW1htTqVk7F6ucmYPgdiD-_bgvl0CmVdOlpU-ja-ab9L_Awz2i1c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126413265</pqid></control><display><type>article</type><title>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Chen, Qingyang ; Lin, Hong ; Qiang, Zhenping ; Liu, Hui ; Ji, Kaifan ; Shang, Zhenhong</creator><creatorcontrib>Chen, Qingyang ; Lin, Hong ; Qiang, Zhenping ; Liu, Hui ; Ji, Kaifan ; Shang, Zhenhong</creatorcontrib><description>The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.</description><identifier>ISSN: 0067-0049</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ad7eb9</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Algorithms ; Brightness ; Coronal mass ejection ; Datasets ; Feature extraction ; Fluid motion ; High altitude ; Machine learning ; Modules ; Motion perception ; Movement ; Observatories ; Optical flow (image analysis) ; Real time ; Solar active region velocity fields ; Space weather ; Unsupervised learning ; Velocity ; Velocity distribution</subject><ispartof>The Astrophysical journal. Supplement series, 2024-11, Vol.275 (1), p.16</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-e1492d57fc4bbac41ee3a49866349805bee596d1485b3bf6036234a17fab7333</cites><orcidid>0000-0001-8950-3875 ; 0009-0006-0548-8334 ; 0000-0003-2714-6811 ; 0000-0003-3494-482X ; 0000-0002-5630-9408 ; 0000-0003-1280-5255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ad7eb9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Chen, Qingyang</creatorcontrib><creatorcontrib>Lin, Hong</creatorcontrib><creatorcontrib>Qiang, Zhenping</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Ji, Kaifan</creatorcontrib><creatorcontrib>Shang, Zhenhong</creatorcontrib><title>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.</description><subject>Algorithms</subject><subject>Brightness</subject><subject>Coronal mass ejection</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Fluid motion</subject><subject>High altitude</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Motion perception</subject><subject>Movement</subject><subject>Observatories</subject><subject>Optical flow (image analysis)</subject><subject>Real time</subject><subject>Solar active region velocity fields</subject><subject>Space weather</subject><subject>Unsupervised learning</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0067-0049</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1P3DAQtapW6pb23qMlrqTYGX_Ex3bFFiQ-Ltsea9nxpMpi4mBni_j3zRIEJy4zmqc3b0bvEfKVs2_QCH3KJTSVACVPXdDozTuyeoHekxVjSleMCfORfCplxxjTEsyK_FlfndHfGFPbT49002MMdO1iu49u6tNAr1LASH-4goHOoxvor6HsR8z_-gO0zW4oXcp3mOnNOPWti3QT0wO9xukh5dvP5EPnYsEvz_2IbDdn2_V5dXnz82L9_bJqa6mnCrkwdZC6a4X3rhUcEZwwjVIwVyY9ojQqcNFID75TDFQNwnHdOa8B4IhcLLIhuZ0dc3_n8qNNrrdPQMp_rcvzdxFt8NAYhS0384UaeINMQcBac6NY7XHWOl60xpzu91gmu0v7PMzfW-C1EhxqJWcWW1htTqVk7F6ucmYPgdiD-_bgvl0CmVdOlpU-ja-ab9L_Awz2i1c</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chen, Qingyang</creator><creator>Lin, Hong</creator><creator>Qiang, Zhenping</creator><creator>Liu, Hui</creator><creator>Ji, Kaifan</creator><creator>Shang, Zhenhong</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8950-3875</orcidid><orcidid>https://orcid.org/0009-0006-0548-8334</orcidid><orcidid>https://orcid.org/0000-0003-2714-6811</orcidid><orcidid>https://orcid.org/0000-0003-3494-482X</orcidid><orcidid>https://orcid.org/0000-0002-5630-9408</orcidid><orcidid>https://orcid.org/0000-0003-1280-5255</orcidid></search><sort><creationdate>20241101</creationdate><title>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</title><author>Chen, Qingyang ; Lin, Hong ; Qiang, Zhenping ; Liu, Hui ; Ji, Kaifan ; Shang, Zhenhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-e1492d57fc4bbac41ee3a49866349805bee596d1485b3bf6036234a17fab7333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brightness</topic><topic>Coronal mass ejection</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Fluid motion</topic><topic>High altitude</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Motion perception</topic><topic>Movement</topic><topic>Observatories</topic><topic>Optical flow (image analysis)</topic><topic>Real time</topic><topic>Solar active region velocity fields</topic><topic>Space weather</topic><topic>Unsupervised learning</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qingyang</creatorcontrib><creatorcontrib>Lin, Hong</creatorcontrib><creatorcontrib>Qiang, Zhenping</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Ji, Kaifan</creatorcontrib><creatorcontrib>Shang, Zhenhong</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qingyang</au><au>Lin, Hong</au><au>Qiang, Zhenping</au><au>Liu, Hui</au><au>Ji, Kaifan</au><au>Shang, Zhenhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>275</volume><issue>1</issue><spage>16</spage><pages>16-</pages><issn>0067-0049</issn><eissn>1538-4365</eissn><abstract>The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ad7eb9</doi><orcidid>https://orcid.org/0000-0001-8950-3875</orcidid><orcidid>https://orcid.org/0009-0006-0548-8334</orcidid><orcidid>https://orcid.org/0000-0003-2714-6811</orcidid><orcidid>https://orcid.org/0000-0003-3494-482X</orcidid><orcidid>https://orcid.org/0000-0002-5630-9408</orcidid><orcidid>https://orcid.org/0000-0003-1280-5255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2024-11, Vol.275 (1), p.16
issn 0067-0049
1538-4365
language eng
recordid cdi_proquest_journals_3126413265
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection
subjects Algorithms
Brightness
Coronal mass ejection
Datasets
Feature extraction
Fluid motion
High altitude
Machine learning
Modules
Motion perception
Movement
Observatories
Optical flow (image analysis)
Real time
Solar active region velocity fields
Space weather
Unsupervised learning
Velocity
Velocity distribution
title CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CME%20Velocity%20Field%20Calculation%20Model%20Based%20on%20an%20Unsupervised%20Transformer%20Optical%20Flow%20Network&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Chen,%20Qingyang&rft.date=2024-11-01&rft.volume=275&rft.issue=1&rft.spage=16&rft.pages=16-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ad7eb9&rft_dat=%3Cproquest_doaj_%3E3126413265%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126413265&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_db3896ec193a42318e063de2719602be&rfr_iscdi=true