CME Velocity Field Calculation Model Based on an Unsupervised Transformer Optical Flow Network

The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2024-11, Vol.275 (1), p.16
Hauptverfasser: Chen, Qingyang, Lin, Hong, Qiang, Zhenping, Liu, Hui, Ji, Kaifan, Shang, Zhenhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optical flow algorithm (OF) is one the main methods for calculating image velocity field and has many applications in space weather. Most OF calculations are applied to the motion of labeled rigid objects and are not suitable for velocity detection of high-energy particles, such as in a coronal mass ejection (CME). Fluctuations in exposure time and the influence of space weather will lead to inconsistent brightness of the same feature point at different times. To address this problem, we propose an unsupervised multiscale optical flow network based on Vision Transformer, named UTFlowNet. The network comprises a multiscale feature extraction module and a coarse-to-fine global optical flow calculation module. The movement of high-energy particles emitted during a CME eruption follows certain physical rules. Therefore, we apply fluid motion–based loss functions to analyze the motion of high-energy particles more effectively, addressing the problem of CME motion field extraction. Our method can be applied to the real-time automatic extraction of a CME’s velocity field and performs well with inconsistent brightness, large-scale motion, and strong CME noise. Additionally, we can estimate subpixel level fine-grained velocity. Our model may be affected by overfitting during cross–data set inference, so we encourage performing a small amount of transfer learning on new data sets to mitigate this issue. In order to verify the accuracy of our method, we conducted experiments and verification on the Solar and Heliospheric Observatory LASCO C2 data and the High Altitude Observatory MLSO data. We constructed a large-scale displacement simulation data set based on LASCO C2 data and tested on it, achieving the best results.
ISSN:0067-0049
1538-4365
DOI:10.3847/1538-4365/ad7eb9