Explainable machine learning model for predicting molten steel temperature in the LF refining process

Accurate prediction of molten steel temperature in the ladle furnace (LF) refining process has an important influence on the quality of molten steel and the control of steelmaking cost. Extensive research on establishing models to predict molten steel temperature has been conducted. However, most re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2024-12, Vol.31 (12), p.2657-2669
Hauptverfasser: Xin, Zicheng, Zhang, Jiangshan, Peng, Kaixiang, Zhang, Junguo, Zhang, Chunhui, Wu, Jun, Zhang, Bo, Liu, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate prediction of molten steel temperature in the ladle furnace (LF) refining process has an important influence on the quality of molten steel and the control of steelmaking cost. Extensive research on establishing models to predict molten steel temperature has been conducted. However, most researchers focus solely on improving the accuracy of the model, neglecting its explainability. The present study aims to develop a high-precision and explainable model with improved reliability and transparency. The eXtreme gradient boosting (XGBoost) and light gradient boosting machine (LGBM) were utilized, along with bayesian optimization and grey wolf optimization (GWO), to establish the prediction model. Different performance evaluation metrics and graphical representations were applied to compare the optimal XGBoost and LGBM models obtained through varying hyperparameter optimization methods with the other models. The findings indicated that the GWO-LGBM model outperformed other methods in predicting molten steel temperature, with a high prediction accuracy of 89.35% within the error range of ±5°C. The model’s learning/decision process was revealed, and the influence degree of different variables on the molten steel temperature was clarified using the tree structure visualization and SHapley Additive exPlanations (SHAP) analysis. Consequently, the explainability of the optimal GWO-LGBM model was enhanced, providing reliable support for prediction results.
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-024-2950-4