Proof of Work with Random Selection (PoWR): An Energy Saving Consensus Algorithm with Proof of Work and the Random Selection Function
Bitcoin, which has been used for 13 years, has a role in transactions and investments as a major cryptocurrency. However, as the number of users increases, Bitcoin faces difficulties, such as scalability for transaction throughput and energy-consumption problems due to the concentration of the minin...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-11, Vol.16 (21), p.9342 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bitcoin, which has been used for 13 years, has a role in transactions and investments as a major cryptocurrency. However, as the number of users increases, Bitcoin faces difficulties, such as scalability for transaction throughput and energy-consumption problems due to the concentration of the mining pool. When Bitcoin first started to come out, it began to develop gradually through the mining of individuals. Nevertheless, as the price of the cryptocurrency gradually climbed, large mining corporation groups entered the mining competition with integrated circuit (IC) chips. Consequently, the substantial increase in power consumption is raising concerns regarding energy expenditure. This paper confirms that the verifiable random selection consensus protocol based on proof of work facilitates a fair and efficient system, enabling the participation of numerous individual miners in the mining competition while counteracting the monopolization of the hash rate by large mining corporations, thereby preserving the decentralization of mining. The protocol demonstrates the potential to mitigate substantial energy consumption. Moreover, it embodies features that create barriers to the adoption of high-energy-consuming application-specific integrated circuit equipment, significantly diminishing the principal factors contributing to extensive power utilization. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16219342 |