Robust quantum dots charge autotuning using neural network uncertainty

This study presents a machine learning-based procedure to automate the charge tuning of semiconductor spin qubits with minimal human intervention, addressing one of the significant challenges in scaling up quantum dot technologies. This method exploits artificial neural networks to identify noisy tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2024-12, Vol.5 (4), p.45034
Hauptverfasser: Yon, Victor, Galaup, Bastien, Rohrbacher, Claude, Rivard, Joffrey, Godfrin, Clément, Li, Ruoyu, Kubicek, Stefan, De Greve, Kristiaan, Gaudreau, Louis, Dupont-Ferrier, Eva, Beilliard, Yann, Melko, Roger G, Drouin, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a machine learning-based procedure to automate the charge tuning of semiconductor spin qubits with minimal human intervention, addressing one of the significant challenges in scaling up quantum dot technologies. This method exploits artificial neural networks to identify noisy transition lines in stability diagrams, guiding a robust exploration strategy leveraging neural network uncertainty estimations. Tested across three distinct offline experimental datasets representing different single-quantum-dot technologies, this approach achieves a tuning success rate of over 99% in optimal cases, where more than 10% of the success is directly attributable to uncertainty exploitation. The challenging constraints of small training sets containing high diagram-to-diagram variability allowed us to evaluate the capabilities and limits of the proposed procedure.
ISSN:2632-2153
2632-2153
DOI:10.1088/2632-2153/ad88d5