Nonlinear Dynamics of Acoustic Instability in a Vibrationally Excited Gas: Influence of Heating and Cooling
The dynamics of unstable sound waves in a nonequilibrium vibrationally excited gas is considered with allowance for viscosity and thermal conductivity. A numerical model has been constructed and a computational tool has been developed to study the linear and nonlinear stages of the development of ac...
Gespeichert in:
Veröffentlicht in: | Fluid dynamics 2024-08, Vol.59 (4), p.899-915 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dynamics of unstable sound waves in a nonequilibrium vibrationally excited gas is considered with allowance for viscosity and thermal conductivity. A numerical model has been constructed and a computational tool has been developed to study the linear and nonlinear stages of the development of acoustic instability in a nonequilibrium gas with different models of relaxation, heating, and cooling times. The numerical model has a high spatial resolution and second order accuracy. It is shown that at the initial stage small disturbances generated by a sound source grow exponentially in accordance with conclusions of the linear theory. At the nonlinear stage of the development of acoustic instability, a sawtooth system of weak shock waves (SWs) is first formed; then, due to the interaction (merging) of SWs, a quasi-stationary system of high-intensity shock wave pulses (SWPs) is formed. |
---|---|
ISSN: | 0015-4628 1573-8507 |
DOI: | 10.1134/S0015462824602584 |