Phase changes in burning precursor-laden single droplets leading to puffing and micro-explosion

When producing metal-oxide nanoparticles via flame spray pyrolysis, precursor-laden droplets are ignited and undergo thermally induced disintegration, called ‘puffing’ and ‘micro-explosion’. In a manner that is not fully understood, these processes are associated with the formation of dispersed phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2024-11, Vol.65 (11), Article 170
Hauptverfasser: Südholt, Benjamin A., Witte, Arne, Smallwood, Greg J., Kaiser, Sebastian A., Mädler, Lutz, Jüngst, Niklas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When producing metal-oxide nanoparticles via flame spray pyrolysis, precursor-laden droplets are ignited and undergo thermally induced disintegration, called ‘puffing’ and ‘micro-explosion’. In a manner that is not fully understood, these processes are associated with the formation of dispersed phases inside the droplets. This work aims at visualizing the interior of precursor-laden burning single droplets via diffuse back illumination and microscopic high-speed imaging. Solutions containing iron(III) nitrate nonahydrate (INN) and tin(II) 2-ethylhexanoate (Sn-EH) were dispersed into single droplets of sub-100 μm diameter that were ignited by passing through a heated coil. At low precursor concentration, 50% of the INN-laden droplets indicate a gas bubble of about 5 μm diameter in the center of the droplet. The bubble persists for several hundred microseconds at a similar size. In almost all of these cases, the bubble expands at some point and the droplet ends up in a micro-explosion. In some of these instances, the droplet’s surface shows spatial brightness modulations, i.e., surface undulations, indicating the formation of a viscous shell. With increasing INN concentration, the fraction of droplets showing surface undulations, gas bubbles, and micro-explosions drastically decreases. This may be associated with a more rigid viscous shell and reduced mobility of bubbles. Bright incandescent streaks originating from the disrupting INN-laden droplets, may indicate sub-micrometer droplets or particles from within the droplets or formed in the gas phase. In contrast, Sn-EH-laden droplets show very fast disruptions, typically less than 10 μs from first visible deformation to ejection of secondary droplets. Bubbles and surface undulations were not observed. Graphical abstract
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-024-03895-w