Positive scalar curvature meets Ricci limit spaces
We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -fac...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2024-11, Vol.175 (3-4), p.943-969 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 969 |
---|---|
container_issue | 3-4 |
container_start_page | 943 |
container_title | Manuscripta mathematica |
container_volume | 175 |
creator | Wang, Jinmin Xie, Zhizhang Zhu, Bo Zhu, Xingyu |
description | We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of
n
-manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most
n
-
2
lines or
R
-factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds. |
doi_str_mv | 10.1007/s00229-024-01596-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126031667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126031667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e0ba8cf849a4d31af44682e5cac63482d1d6c28a7b55f7a8199c36ae356ca6853</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7-ZrMUopaoaCIrsNrmpGUtlOTmYL_3ugI7ly9xb3nPjiMXSJcI0B9kwGEaDgIxQF1Y7g5YhNUUnCsrT5mk5JrLgziKTvLeQ1QwlpOmHjucuzjIVTZ04ZS5Yd0oH5IodqG0OfqJXofq03cxr7Ke_Ihn7OTljY5XPzeKXu7v3udzfni6eFxdrvgXgD0PMCSrG-takitJFKrlLEiaE_eSGXFClfGC0v1Uuu2JotN46WhILXxZKyWU3Y17u5T9zGE3Lt1N6RdeekkCgMSjalLS4wtn7qcU2jdPsUtpU-H4L7duNGNK27cjxtnCiRHKJfy7j2kv-l_qC8hCmX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126031667</pqid></control><display><type>article</type><title>Positive scalar curvature meets Ricci limit spaces</title><source>SpringerNature Journals</source><creator>Wang, Jinmin ; Xie, Zhizhang ; Zhu, Bo ; Zhu, Xingyu</creator><creatorcontrib>Wang, Jinmin ; Xie, Zhizhang ; Zhu, Bo ; Zhu, Xingyu</creatorcontrib><description>We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of
n
-manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most
n
-
2
lines or
R
-factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-024-01596-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Curvature ; Geometry ; Lie Groups ; Manifolds ; Mathematics ; Mathematics and Statistics ; Number Theory ; Splitting ; Topological Groups ; Upper bounds</subject><ispartof>Manuscripta mathematica, 2024-11, Vol.175 (3-4), p.943-969</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e0ba8cf849a4d31af44682e5cac63482d1d6c28a7b55f7a8199c36ae356ca6853</cites><orcidid>0000-0001-7545-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-024-01596-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-024-01596-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Wang, Jinmin</creatorcontrib><creatorcontrib>Xie, Zhizhang</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Zhu, Xingyu</creatorcontrib><title>Positive scalar curvature meets Ricci limit spaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of
n
-manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most
n
-
2
lines or
R
-factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Curvature</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Splitting</subject><subject>Topological Groups</subject><subject>Upper bounds</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7-ZrMUopaoaCIrsNrmpGUtlOTmYL_3ugI7ly9xb3nPjiMXSJcI0B9kwGEaDgIxQF1Y7g5YhNUUnCsrT5mk5JrLgziKTvLeQ1QwlpOmHjucuzjIVTZ04ZS5Yd0oH5IodqG0OfqJXofq03cxr7Ke_Ihn7OTljY5XPzeKXu7v3udzfni6eFxdrvgXgD0PMCSrG-takitJFKrlLEiaE_eSGXFClfGC0v1Uuu2JotN46WhILXxZKyWU3Y17u5T9zGE3Lt1N6RdeekkCgMSjalLS4wtn7qcU2jdPsUtpU-H4L7duNGNK27cjxtnCiRHKJfy7j2kv-l_qC8hCmX_</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wang, Jinmin</creator><creator>Xie, Zhizhang</creator><creator>Zhu, Bo</creator><creator>Zhu, Xingyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7545-9877</orcidid></search><sort><creationdate>20241101</creationdate><title>Positive scalar curvature meets Ricci limit spaces</title><author>Wang, Jinmin ; Xie, Zhizhang ; Zhu, Bo ; Zhu, Xingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e0ba8cf849a4d31af44682e5cac63482d1d6c28a7b55f7a8199c36ae356ca6853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Curvature</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Splitting</topic><topic>Topological Groups</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinmin</creatorcontrib><creatorcontrib>Xie, Zhizhang</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Zhu, Xingyu</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinmin</au><au>Xie, Zhizhang</au><au>Zhu, Bo</au><au>Zhu, Xingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive scalar curvature meets Ricci limit spaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>175</volume><issue>3-4</issue><spage>943</spage><epage>969</epage><pages>943-969</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of
n
-manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most
n
-
2
lines or
R
-factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-024-01596-6</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7545-9877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2024-11, Vol.175 (3-4), p.943-969 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_3126031667 |
source | SpringerNature Journals |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Curvature Geometry Lie Groups Manifolds Mathematics Mathematics and Statistics Number Theory Splitting Topological Groups Upper bounds |
title | Positive scalar curvature meets Ricci limit spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20scalar%20curvature%20meets%20Ricci%20limit%20spaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Wang,%20Jinmin&rft.date=2024-11-01&rft.volume=175&rft.issue=3-4&rft.spage=943&rft.epage=969&rft.pages=943-969&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-024-01596-6&rft_dat=%3Cproquest_cross%3E3126031667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126031667&rft_id=info:pmid/&rfr_iscdi=true |