Positive scalar curvature meets Ricci limit spaces

We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-11, Vol.175 (3-4), p.943-969
Hauptverfasser: Wang, Jinmin, Xie, Zhizhang, Zhu, Bo, Zhu, Xingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 969
container_issue 3-4
container_start_page 943
container_title Manuscripta mathematica
container_volume 175
creator Wang, Jinmin
Xie, Zhizhang
Zhu, Bo
Zhu, Xingyu
description We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.
doi_str_mv 10.1007/s00229-024-01596-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126031667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126031667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e0ba8cf849a4d31af44682e5cac63482d1d6c28a7b55f7a8199c36ae356ca6853</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7-ZrMUopaoaCIrsNrmpGUtlOTmYL_3ugI7ly9xb3nPjiMXSJcI0B9kwGEaDgIxQF1Y7g5YhNUUnCsrT5mk5JrLgziKTvLeQ1QwlpOmHjucuzjIVTZ04ZS5Yd0oH5IodqG0OfqJXofq03cxr7Ke_Ihn7OTljY5XPzeKXu7v3udzfni6eFxdrvgXgD0PMCSrG-takitJFKrlLEiaE_eSGXFClfGC0v1Uuu2JotN46WhILXxZKyWU3Y17u5T9zGE3Lt1N6RdeekkCgMSjalLS4wtn7qcU2jdPsUtpU-H4L7duNGNK27cjxtnCiRHKJfy7j2kv-l_qC8hCmX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126031667</pqid></control><display><type>article</type><title>Positive scalar curvature meets Ricci limit spaces</title><source>SpringerNature Journals</source><creator>Wang, Jinmin ; Xie, Zhizhang ; Zhu, Bo ; Zhu, Xingyu</creator><creatorcontrib>Wang, Jinmin ; Xie, Zhizhang ; Zhu, Bo ; Zhu, Xingyu</creatorcontrib><description>We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-024-01596-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Curvature ; Geometry ; Lie Groups ; Manifolds ; Mathematics ; Mathematics and Statistics ; Number Theory ; Splitting ; Topological Groups ; Upper bounds</subject><ispartof>Manuscripta mathematica, 2024-11, Vol.175 (3-4), p.943-969</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e0ba8cf849a4d31af44682e5cac63482d1d6c28a7b55f7a8199c36ae356ca6853</cites><orcidid>0000-0001-7545-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-024-01596-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-024-01596-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Wang, Jinmin</creatorcontrib><creatorcontrib>Xie, Zhizhang</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Zhu, Xingyu</creatorcontrib><title>Positive scalar curvature meets Ricci limit spaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Curvature</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Splitting</subject><subject>Topological Groups</subject><subject>Upper bounds</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7-ZrMUopaoaCIrsNrmpGUtlOTmYL_3ugI7ly9xb3nPjiMXSJcI0B9kwGEaDgIxQF1Y7g5YhNUUnCsrT5mk5JrLgziKTvLeQ1QwlpOmHjucuzjIVTZ04ZS5Yd0oH5IodqG0OfqJXofq03cxr7Ke_Ihn7OTljY5XPzeKXu7v3udzfni6eFxdrvgXgD0PMCSrG-takitJFKrlLEiaE_eSGXFClfGC0v1Uuu2JotN46WhILXxZKyWU3Y17u5T9zGE3Lt1N6RdeekkCgMSjalLS4wtn7qcU2jdPsUtpU-H4L7duNGNK27cjxtnCiRHKJfy7j2kv-l_qC8hCmX_</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wang, Jinmin</creator><creator>Xie, Zhizhang</creator><creator>Zhu, Bo</creator><creator>Zhu, Xingyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7545-9877</orcidid></search><sort><creationdate>20241101</creationdate><title>Positive scalar curvature meets Ricci limit spaces</title><author>Wang, Jinmin ; Xie, Zhizhang ; Zhu, Bo ; Zhu, Xingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e0ba8cf849a4d31af44682e5cac63482d1d6c28a7b55f7a8199c36ae356ca6853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Curvature</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Splitting</topic><topic>Topological Groups</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinmin</creatorcontrib><creatorcontrib>Xie, Zhizhang</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Zhu, Xingyu</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinmin</au><au>Xie, Zhizhang</au><au>Zhu, Bo</au><au>Zhu, Xingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive scalar curvature meets Ricci limit spaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>175</volume><issue>3-4</issue><spage>943</spage><epage>969</epage><pages>943-969</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-024-01596-6</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7545-9877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2024-11, Vol.175 (3-4), p.943-969
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_3126031667
source SpringerNature Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Curvature
Geometry
Lie Groups
Manifolds
Mathematics
Mathematics and Statistics
Number Theory
Splitting
Topological Groups
Upper bounds
title Positive scalar curvature meets Ricci limit spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20scalar%20curvature%20meets%20Ricci%20limit%20spaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Wang,%20Jinmin&rft.date=2024-11-01&rft.volume=175&rft.issue=3-4&rft.spage=943&rft.epage=969&rft.pages=943-969&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-024-01596-6&rft_dat=%3Cproquest_cross%3E3126031667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126031667&rft_id=info:pmid/&rfr_iscdi=true