Positive scalar curvature meets Ricci limit spaces

We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-11, Vol.175 (3-4), p.943-969
Hauptverfasser: Wang, Jinmin, Xie, Zhizhang, Zhu, Bo, Zhu, Xingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-024-01596-6