Positive scalar curvature meets Ricci limit spaces
We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of n -manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most n - 2 lines or R -fac...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2024-11, Vol.175 (3-4), p.943-969 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the influence of uniformly positive scalar curvature on the size of a non-collapsed Ricci limit space coming from a sequence of
n
-manifolds with non-negative Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space splits at most
n
-
2
lines or
R
-factors. When this maximal splitting occurs, we obtain a uniform upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap estimate and a volume growth order estimate of geodesic balls on such manifolds. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-024-01596-6 |