Holomorphic geometric structures on Oeljeklaus–Toma manifolds
We prove that any holomorphic geometric structure of affine type on an Oeljeklaus–Toma manifold is locally homogeneous. For locally conformally Kähler Oeljeklaus–Toma manifolds we prove that all holomorphic geometric structures, and also all holomorphic Cartan geometries, on them are locally homogen...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2024-11, Vol.175 (3-4), p.1105-1117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that any holomorphic geometric structure of affine type on an Oeljeklaus–Toma manifold is locally homogeneous. For locally conformally Kähler Oeljeklaus–Toma manifolds we prove that all holomorphic geometric structures, and also all holomorphic Cartan geometries, on them are locally homogeneous. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-024-01594-8 |