Holomorphic geometric structures on Oeljeklaus–Toma manifolds

We prove that any holomorphic geometric structure of affine type on an Oeljeklaus–Toma manifold is locally homogeneous. For locally conformally Kähler Oeljeklaus–Toma manifolds we prove that all holomorphic geometric structures, and also all holomorphic Cartan geometries, on them are locally homogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-11, Vol.175 (3-4), p.1105-1117
Hauptverfasser: Biswas, Indranil, Dumitrescu, Sorin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that any holomorphic geometric structure of affine type on an Oeljeklaus–Toma manifold is locally homogeneous. For locally conformally Kähler Oeljeklaus–Toma manifolds we prove that all holomorphic geometric structures, and also all holomorphic Cartan geometries, on them are locally homogeneous.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-024-01594-8