On the short-wavelength three-dimensional instability in the cylinder wake

We examine the mechanisms responsible for the onset of the three-dimensional mode B instability in the wake behind a circular cylinder. We show that it is possible to explicitly account for the stabilising effect of spanwise viscous diffusion and then demonstrate that the remaining mechanisms involv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-11, Vol.999, Article A13
Hauptverfasser: Aleksyuk, Andrey I., Heil, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the mechanisms responsible for the onset of the three-dimensional mode B instability in the wake behind a circular cylinder. We show that it is possible to explicitly account for the stabilising effect of spanwise viscous diffusion and then demonstrate that the remaining mechanisms involved in this short-wavelength instability are preserved in the limit of zero wavelength. Using the resulting simplified equations, we show that perturbations in different fluid particles interact only through the in-plane viscous diffusion which turns out to have a destabilising effect. We also show that in the presence of viscous diffusion, the closed trajectories which had been conjectured to play a crucial role in the onset of the mode B instability are not actually a prerequisite for the growth of mode B type perturbations. We combine these observations to identify the three essential ingredients for the development of the mode B instability: (i) the amplification of perturbations in the braid regions due to the stretching mechanism; and the spreading of perturbations through (ii) viscous diffusion, and (iii) cross-flow advection which transports fluid between the two braid regions on either side of the cylinder. Finally, we develop a simple criterion that allows the prediction of the regions where three-dimensional short-wavelength perturbations are amplified by the stretching mechanism. The approach used in our study is general and has the potential to give insights into the onset of three-dimensionality via short-wavelength instabilities in other flows.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2024.894