Structural, optical and electrochemical properties of reduced graphene oxide-polyaniline composites for supercapacitor applications
In the present work, polyaniline-reduced graphene oxide (PANI-rGO) nanocomposite films were synthesized by varying their concentration in composites of rGO nanosheets, and ammonium sulfate (NH 4 ) 2 SO 4 was used as a catalyst. The microstructural, structural network, optical, compositional, and ele...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2024-11, Vol.35 (31), p.2037, Article 2037 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, polyaniline-reduced graphene oxide (PANI-rGO) nanocomposite films were synthesized by varying their concentration in composites of rGO nanosheets, and ammonium sulfate (NH
4
)
2
SO
4
was used as a catalyst. The microstructural, structural network, optical, compositional, and electrochemical properties of rGO/PANI nanocomposites were investigated using scanning electron microscopy X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). The XRD peaks obtained for both PANI and G/PANI Nanocomposite at 14.5
◦
, 19.87
◦
, and 25.6
◦
, with the corresponding planes of (011), (020), and (200), confirm the successful synthesis of both PANI and G/PANI nanocomposites, resulting in a more ordered structure with high crystallinity during polymerization. FTIR, UV–Vis, and Raman spectroscopy results show that strong π − π interactions aided in the uniform distribution of PANI on the rGO nanosheets. Furthermore, the XPS results demonstrate the presence of C-H, N–H, C–C, and C-O bonds, corroborating the FTIR and Raman spectroscopy findings. The electrochemical properties of the PANI-rGO confirm its possible applications as a promising electrode material for high-performance supercapacitors. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-024-13806-8 |