Graphs with Large Steiner Number
In 2002, G. Chartrand and P. Zhang [ Discrete Math. , 242 , 4 (2002)] characterized the connected graphs G of order p ≥ 3 with Steiner number p, p − 1 , or 2 . We characterize all connected graphs G of order p ≥ 4 with Steiner number s ( G ) = p − 2. In addition, we obtain some sharp Nordhaus–Gaddum...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2024-10, Vol.76 (5), p.805-815 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | 5 |
container_start_page | 805 |
container_title | Ukrainian mathematical journal |
container_volume | 76 |
creator | John, J. Raj, M. S. Malchijah |
description | In 2002, G. Chartrand and P. Zhang [
Discrete Math.
,
242
, 4 (2002)] characterized the connected graphs
G
of order
p
≥ 3 with Steiner number
p, p −
1
,
or 2
.
We characterize all connected graphs
G
of order
p
≥ 4 with Steiner number
s
(
G
) =
p −
2. In addition, we obtain some sharp Nordhaus–Gaddum bounds for the Steiner number of connected graphs whose complement is also connected. |
doi_str_mv | 10.1007/s11253-024-02354-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3125403565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3125403565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-392d2b52daf6a3bc1adf4a6ecc6edad3c170ed553cd1372ac62590eb88009da63</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdfwFPBc3SSaZL2KIvuCkUP6jmkSbrbxW3XpEV8e6MVvHkY5vJ__zAfIZcMrhmAuomMcYEUeJEGRUHxiGRMKKQVKnlMMoCCUVFV4pScxbgDSFipMpKvgjlsY_7Rjdu8NmHj8-fRd70P-eO0b3w4JyeteYv-4ncvyOv93ctyTeun1cPytqaWA4wUK-54I7gzrTTYWGZcWxjprZXeGYeWKfBOCLSOoeLGSi4q8E1ZAlTOSFyQq7n3EIb3ycdR74Yp9OmkxvRbASikSCk-p2wYYgy-1YfQ7U341Az0twk9m9DJhP4xoTFBOEMxhfuND3_V_1BfmOhfag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125403565</pqid></control><display><type>article</type><title>Graphs with Large Steiner Number</title><source>Springer Nature - Complete Springer Journals</source><creator>John, J. ; Raj, M. S. Malchijah</creator><creatorcontrib>John, J. ; Raj, M. S. Malchijah</creatorcontrib><description>In 2002, G. Chartrand and P. Zhang [
Discrete Math.
,
242
, 4 (2002)] characterized the connected graphs
G
of order
p
≥ 3 with Steiner number
p, p −
1
,
or 2
.
We characterize all connected graphs
G
of order
p
≥ 4 with Steiner number
s
(
G
) =
p −
2. In addition, we obtain some sharp Nordhaus–Gaddum bounds for the Steiner number of connected graphs whose complement is also connected.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-024-02354-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Graphs ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2024-10, Vol.76 (5), p.805-815</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-392d2b52daf6a3bc1adf4a6ecc6edad3c170ed553cd1372ac62590eb88009da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-024-02354-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-024-02354-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>John, J.</creatorcontrib><creatorcontrib>Raj, M. S. Malchijah</creatorcontrib><title>Graphs with Large Steiner Number</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>In 2002, G. Chartrand and P. Zhang [
Discrete Math.
,
242
, 4 (2002)] characterized the connected graphs
G
of order
p
≥ 3 with Steiner number
p, p −
1
,
or 2
.
We characterize all connected graphs
G
of order
p
≥ 4 with Steiner number
s
(
G
) =
p −
2. In addition, we obtain some sharp Nordhaus–Gaddum bounds for the Steiner number of connected graphs whose complement is also connected.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdfwFPBc3SSaZL2KIvuCkUP6jmkSbrbxW3XpEV8e6MVvHkY5vJ__zAfIZcMrhmAuomMcYEUeJEGRUHxiGRMKKQVKnlMMoCCUVFV4pScxbgDSFipMpKvgjlsY_7Rjdu8NmHj8-fRd70P-eO0b3w4JyeteYv-4ncvyOv93ctyTeun1cPytqaWA4wUK-54I7gzrTTYWGZcWxjprZXeGYeWKfBOCLSOoeLGSi4q8E1ZAlTOSFyQq7n3EIb3ycdR74Yp9OmkxvRbASikSCk-p2wYYgy-1YfQ7U341Az0twk9m9DJhP4xoTFBOEMxhfuND3_V_1BfmOhfag</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>John, J.</creator><creator>Raj, M. S. Malchijah</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Graphs with Large Steiner Number</title><author>John, J. ; Raj, M. S. Malchijah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-392d2b52daf6a3bc1adf4a6ecc6edad3c170ed553cd1372ac62590eb88009da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, J.</creatorcontrib><creatorcontrib>Raj, M. S. Malchijah</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, J.</au><au>Raj, M. S. Malchijah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphs with Large Steiner Number</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>76</volume><issue>5</issue><spage>805</spage><epage>815</epage><pages>805-815</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>In 2002, G. Chartrand and P. Zhang [
Discrete Math.
,
242
, 4 (2002)] characterized the connected graphs
G
of order
p
≥ 3 with Steiner number
p, p −
1
,
or 2
.
We characterize all connected graphs
G
of order
p
≥ 4 with Steiner number
s
(
G
) =
p −
2. In addition, we obtain some sharp Nordhaus–Gaddum bounds for the Steiner number of connected graphs whose complement is also connected.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-024-02354-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2024-10, Vol.76 (5), p.805-815 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_proquest_journals_3125403565 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Analysis Applications of Mathematics Geometry Graphs Mathematics Mathematics and Statistics Statistics |
title | Graphs with Large Steiner Number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20with%20Large%20Steiner%20Number&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=John,%20J.&rft.date=2024-10-01&rft.volume=76&rft.issue=5&rft.spage=805&rft.epage=815&rft.pages=805-815&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-024-02354-3&rft_dat=%3Cproquest_cross%3E3125403565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125403565&rft_id=info:pmid/&rfr_iscdi=true |