Graphs with Large Steiner Number

In 2002, G. Chartrand and P. Zhang [ Discrete Math. , 242 , 4 (2002)] characterized the connected graphs G of order p ≥ 3 with Steiner number p, p − 1 , or 2 . We characterize all connected graphs G of order p ≥ 4 with Steiner number s ( G ) = p − 2. In addition, we obtain some sharp Nordhaus–Gaddum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2024-10, Vol.76 (5), p.805-815
Hauptverfasser: John, J., Raj, M. S. Malchijah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2002, G. Chartrand and P. Zhang [ Discrete Math. , 242 , 4 (2002)] characterized the connected graphs G of order p ≥ 3 with Steiner number p, p − 1 , or 2 . We characterize all connected graphs G of order p ≥ 4 with Steiner number s ( G ) = p − 2. In addition, we obtain some sharp Nordhaus–Gaddum bounds for the Steiner number of connected graphs whose complement is also connected.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-024-02354-3