Fermionic integrable models and graded Borchers triples

We provide an operator-algebraic construction of integrable models of quantum field theory on 1+1-dimensional Minkowski space with fermionic scattering states. These are obtained by a grading of the wedge-local fields or, alternatively, of the underlying Borchers triple defining the theory. This lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2024-11, Vol.114 (6), Article 130
Hauptverfasser: Bostelmann, Henning, Cadamuro, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide an operator-algebraic construction of integrable models of quantum field theory on 1+1-dimensional Minkowski space with fermionic scattering states. These are obtained by a grading of the wedge-local fields or, alternatively, of the underlying Borchers triple defining the theory. This leads to a net of graded-local field algebras, of which the even part can be considered observable, although it is lacking Haag duality. Importantly, the nuclearity condition implying nontriviality of the local field algebras is independent of the grading, so that existing results on this technical question can be utilized. Application of Haag–Ruelle scattering theory confirms that the asymptotic particles are indeed fermionic. We also discuss connections with the form factor programme.
ISSN:1573-0530
0377-9017
1573-0530
DOI:10.1007/s11005-024-01865-1