Fermionic integrable models and graded Borchers triples
We provide an operator-algebraic construction of integrable models of quantum field theory on 1+1-dimensional Minkowski space with fermionic scattering states. These are obtained by a grading of the wedge-local fields or, alternatively, of the underlying Borchers triple defining the theory. This lea...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2024-11, Vol.114 (6), Article 130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide an operator-algebraic construction of integrable models of quantum field theory on 1+1-dimensional Minkowski space with fermionic scattering states. These are obtained by a grading of the wedge-local fields or, alternatively, of the underlying Borchers triple defining the theory. This leads to a net of graded-local field algebras, of which the even part can be considered observable, although it is lacking Haag duality. Importantly, the nuclearity condition implying nontriviality of the local field algebras is independent of the grading, so that existing results on this technical question can be utilized. Application of Haag–Ruelle scattering theory confirms that the asymptotic particles are indeed fermionic. We also discuss connections with the form factor programme. |
---|---|
ISSN: | 1573-0530 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-024-01865-1 |