Whitham modulation theory and the classification of solutions to the Riemann problem of the Fokas–Lenells equation

In this work, we explore the Riemann problem of the Fokas–Lenells (FL) equation given initial data in the form of a step discontinuity by employing the Whitham modulation theory. The periodic wave solutions of the FL equation are characterized by elliptic functions along with the Whitham modulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2024-11, Vol.153 (4), p.n/a
Hauptverfasser: Wu, Zhi‐Jia, Tian, Shou‐Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we explore the Riemann problem of the Fokas–Lenells (FL) equation given initial data in the form of a step discontinuity by employing the Whitham modulation theory. The periodic wave solutions of the FL equation are characterized by elliptic functions along with the Whitham modulation equations. Moreover, we find that the ±$\pm$ signs for the velocities of the periodic wave solutions remain unchanged during propagation. Thus, when analyzing the propagation behavior of solutions, it is necessary to separately consider the clockwise (negative velocity) and counterclockwise (positive velocity) cases. In this regard, we present the classification of the solutions to the Riemann problem of the FL equation in both clockwise and counterclockwise cases for the first time.
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.12779