Yang-Baxter Equations and Relative Rota-Baxter Operators for Left-Alia Algebras Associated to Invariant Theory

Left-Alia algebras are a class of algebras with symmetric Jacobi identities. They contain several typical types of algebras as subclasses, and are closely related to the invariant theory. In this paper, we study the construction theory of left-Alia bialgebras. We introduce the notion of the left-Ali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2024-11, Vol.31 (1), p.78, Article 78
Hauptverfasser: Kang, Chuangchuang, Liu, Guilai, Yu, Shizhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Left-Alia algebras are a class of algebras with symmetric Jacobi identities. They contain several typical types of algebras as subclasses, and are closely related to the invariant theory. In this paper, we study the construction theory of left-Alia bialgebras. We introduce the notion of the left-Alia Yang-Baxter equation. We show that an antisymmetric solution of the left-Alia Yang-Baxter equation gives rise to a left-Alia bialgebra that we call triangular. The notions of relative Rota-Baxter operators of left-Alia algebras and pre-left-Alia algebras are introduced to provide antisymmetric solutions of the left-Alia Yang-Baxter equation.
ISSN:1776-0852
1402-9251
1776-0852
DOI:10.1007/s44198-024-00245-6