Fatigue Crack Propagation Life of Metallic Materials Under Random Loading: A Coupling Analysis Method in the Frequency Domain
ABSTRACT This paper proposes an equivalent spectrum method to predict the fatigue crack propagation (FCP) life of metallic materials subjected to random loading. To adequately account for the coupling effects between crack propagation and the random response of structures, a coupling analysis model...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2024-12, Vol.47 (12), p.4650-4659 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
This paper proposes an equivalent spectrum method to predict the fatigue crack propagation (FCP) life of metallic materials subjected to random loading. To adequately account for the coupling effects between crack propagation and the random response of structures, a coupling analysis model is introduced. The stress intensity factor (SIF) can be estimated based on the power spectral density (PSD) of an equivalent displacement. Random vibration fatigue tests were conducted to evaluate the proposed model on aluminum alloy specimens. Results indicate significant variations in natural frequency with crack length. The predicted results are compared with the experimental values, demonstrating satisfactory prediction accuracy of the proposed coupling analysis model. This model enables the assessment of coupling effects between crack length and random response, facilitating more precise predictions of FCP life in metallic materials and guiding the expanded application of damage tolerance criteria in structural engineering. |
---|---|
ISSN: | 8756-758X 1460-2695 |
DOI: | 10.1111/ffe.14455 |