Nanocomposites for Lithium‐Ion Battery Anodes Made of Silicon and Polyaniline Doped with Phytic Acid

The properties of lithium‐ion battery (LIB) anodes fabricated from nanoscale silicon Si and polyaniline (PANI) as a binder are reported. PANI is prepared by in situ polymerization of aniline in the presence of phytic acid, which serves both as dopant and as a gel‐forming agent. PANI pellets obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2024-11, Vol.12 (11), p.n/a
Hauptverfasser: Astrova, Ekaterina V., Sapurina, Irina Yu, Parfeneva, Alesya V., Li, Galina V., Nashchekin, Alexey V., Lozhkina, Darina A., Rumyantsev, Aleksander M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The properties of lithium‐ion battery (LIB) anodes fabricated from nanoscale silicon Si and polyaniline (PANI) as a binder are reported. PANI is prepared by in situ polymerization of aniline in the presence of phytic acid, which serves both as dopant and as a gel‐forming agent. PANI pellets obtained by dry compression are used to investigate the morphology and to measure the resistivity of PANI and Si/PANI composites. The anodes are fabricated using the slurry technique. Their properties as a function of precursor ratio are studied in the half‐cell cells by charge–discharge characteristics, cyclic voltammetry, electrochemical impedance spectroscopy and cyclic lifetime. It is shown that stable cycling (>350 cycles at a current of 300 mA g−1) is inherent only to thin Si/PANI layers with composite loading
ISSN:2194-4288
2194-4296
DOI:10.1002/ente.202401156