Centered colorings in minor-closed graph classes
A vertex coloring \(\varphi\) of a graph \(G\) is \(p\)-centered if for every connected subgraph \(H\) of \(G\), either \(\varphi\) uses more than \(p\) colors on \(H\), or there is a color that appears exactly once on \(H\). We prove that for every fixed positive integer \(t\), every \(K_t\)-minor-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A vertex coloring \(\varphi\) of a graph \(G\) is \(p\)-centered if for every connected subgraph \(H\) of \(G\), either \(\varphi\) uses more than \(p\) colors on \(H\), or there is a color that appears exactly once on \(H\). We prove that for every fixed positive integer \(t\), every \(K_t\)-minor-free graph admits a \(p\)-centered coloring using \(\mathcal{O}(p^{t-1})\) colors. |
---|---|
ISSN: | 2331-8422 |