1st-Order Magic: Analysis of Sharpness-Aware Minimization

Sharpness-Aware Minimization (SAM) is an optimization technique designed to improve generalization by favoring flatter loss minima. To achieve this, SAM optimizes a modified objective that penalizes sharpness, using computationally efficient approximations. Interestingly, we find that more precise a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Tiwary, Nalin, Aananth, Siddarth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sharpness-Aware Minimization (SAM) is an optimization technique designed to improve generalization by favoring flatter loss minima. To achieve this, SAM optimizes a modified objective that penalizes sharpness, using computationally efficient approximations. Interestingly, we find that more precise approximations of the proposed SAM objective degrade generalization performance, suggesting that the generalization benefits of SAM are rooted in these approximations rather than in the original intended mechanism. This highlights a gap in our understanding of SAM's effectiveness and calls for further investigation into the role of approximations in optimization.
ISSN:2331-8422