DFT Computation, Spectroscopic, Hirshfeld Surface, Docking and Topological Analysis on 2,2,5‐Trimethyl‐1,3‐Dioxane‐5‐Carboxylic Acid as Potent Anti‐Cancer Agent

ABSTRACT The 2,2,5‐trimethyl‐1,3‐dioxane‐5‐carboxylic acid (TDCA) using both theoretical and experimental methods have been studied. The sample has been subjected to XRD, FTIR, FT‐Raman, (C13 and H1) NMR, and UV–vis spectrum analysis. Then, theoretical calculations have been performed at the DFT/B3L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2024-11, Vol.124 (21), p.n/a
Hauptverfasser: kumar, J. Senthil, Karthik, N., Sumathi, S., Jyothi, N. Siva, Saranya, S., Jeyavijayan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The 2,2,5‐trimethyl‐1,3‐dioxane‐5‐carboxylic acid (TDCA) using both theoretical and experimental methods have been studied. The sample has been subjected to XRD, FTIR, FT‐Raman, (C13 and H1) NMR, and UV–vis spectrum analysis. Then, theoretical calculations have been performed at the DFT/B3LYP/6‐311++G(d,p) higher based scale. The theoretical and experimental geometrical parameters and frequencies have been compared well. Theoretical and experimental NMR chemical shifts have been determined. Absorption wavelengths of UV–Vis spectrum were experimentally measured and compared with TD‐DFT predictions. Detailed explanations have been given for frontier molecular orbitals, low density gradient, distribution of Mulliken charges, molecular electrostatic potential (MEP), RDG, localized orbital location, and electron localized activities. Based on the studied 2D image of the Hirschfield surfaces, H···H (65.6%) and O···H/H···O (33.6%) are found as the controlling interactions. A high binding affinity of −6.5 Kcal/mol has been calculated against 4OAR protein. These theoretical findings of the molecule may be used as an anticancer drug candidate, which helps to explain the structural stability, reactivity and anticancer potential of TDCA. High drug affinity for the TDCA has been detected by in silico ADMET prediction. 2,2,5‐trimethyl‐1,3‐dioxane‐5‐carboxylic acid (TDCA) has a high binding affinity of −6.5 Kcal/mol against 3PP0, 1A28, and 4OAR proteins, which suggests that the compound may have a dominating cancer action. The medication component appears inside the molecule's yolk, demonstrating its BBB penetrability in the BOILED Egg model.
ISSN:0020-7608
1097-461X
DOI:10.1002/qua.27509