Computational Exploration of the Impact of Low‐Spin and High‐Spin Ground State on the Chelating Ability of Dimethylglyoxime Ligand on Dihalo Transition Metal: A QTAIM, EDA, and CDA Analysis

ABSTRACT We have explored the chelation of dimethylglyoxime ligand to divalent (ndx: x = 6, 7, 8) transition metal (TM) cations in two media (gas phase and water) at the B3LYP//LANL2DZ/6–311+G (d,p) and B3LYP/def2‐TZVP level at lower multiplicity and higher multiplicity states. Majority of the 18 op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2024-11, Vol.124 (21), p.n/a
Hauptverfasser: Mazia, Suzane Leonie Djendo, Jean, Moto Ongagna, Idrice, Adjieufack Abel, Lissouck, Daniel, Ndom, Jean Claude, Mama, Désiré Bikele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We have explored the chelation of dimethylglyoxime ligand to divalent (ndx: x = 6, 7, 8) transition metal (TM) cations in two media (gas phase and water) at the B3LYP//LANL2DZ/6–311+G (d,p) and B3LYP/def2‐TZVP level at lower multiplicity and higher multiplicity states. Majority of the 18 optimized halide (chloride and bromide) complexes prefer square planar configuration. The correlations discerned between the experimental structural data and their estimated counterparts demonstrate a good credibility for complexes at lower multiplicity state. The basis set superposition errors (BSSEs) estimated is very small which reflects the fact that the choice of different basis sets (B3LYP//LANL2DZ/6–311+G (d,p)) introduces a slight bias in the calculation of energies. The ADMP (atom‐centered density matrix propagation) simulations in water on chloride complexes indicate the irreversible nature of these M—N dissociation in trajectory simulation process. This fact explains our exclusive focus on the examination of the [glyoxime ligand]…[MX2] interactions. In addition, the solvation of (3d and 4d) transition metal chloride complexes causes a sensitive augmentation of the metal ion affinity (MIA) with an average of 0.29 and 0.24 kcal/mol. In both multiplicity states, the topological parameters have illustrated that the M—N and M—X bonds are typical metal–ligand in both media. The average ΔEorb/ΔEsteric ratio equal to 0.45 and 0.11 in gas phase and water, respectively, reveals the predominance of the contributions from non‐covalent bonding interactions (NCI) compared to those of covalent bonding. But, the maximal value equal to 6.760 is obtained for bromide rhodium complex in water. NBO analysis in both media highlights the fact that a more pronounced ionic character is observed for the majority of the chloride complexes at both spin multiplicity states because of their higher retained charges on the metal atom. For [dimethylglyoxime]…[MX2] interaction (X = Cl and Br), the charge decomposition analysis demonstrates that the lowest value of the d/b ratio is found for the chloride platinum complex at lower multiplicity state in water. This is a proof of its strong relativistic effects. Interaction energy contribution within chloro (left) and bromo (right) complexes at lower multiplicity.
ISSN:0020-7608
1097-461X
DOI:10.1002/qua.27495