Plasmon‐Enhanced Circular Polarization High‐Harmonic Generation from Silicon

High harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-11, Vol.12 (31), p.n/a
Hauptverfasser: Ren, Sheng, Chen, Danni, Wang, Shiqi, Chen, Yongqiang, Hu, Rui, Qu, Junle, Liu, Liwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced optical materials
container_volume 12
creator Ren, Sheng
Chen, Danni
Wang, Shiqi
Chen, Yongqiang
Hu, Rui
Qu, Junle
Liu, Liwei
description High harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that have been observed in the 2D crystal medium. In addition, the geometric symmetry of the coplanar atom distribution is related to the orientation of cubic crystals. This implies that only the polarization along a specific crystal orientation can achieve a selection of high‐harmonic polarization states. However, this is a very weak process in cubic crystals owing to the attenuation of crystal anisotropy to circularly polarized light and the dependence of the electron transition rate on the crystal orientation. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process. The harmonic emission is more than ten times brighter than that without nanoantennas and conformed to the selection rules for high harmonics. The research results offer a new approach for deep­ultraviolet space filtering, carrier control, and the development of compact extreme­ultraviolet light sources. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that are observed in the 2D crystal medium. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process.
doi_str_mv 10.1002/adom.202401478
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123923343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123923343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2028-7d6f8ddf2e132b9c2e5aa6bd885e1375cea917672eedf95c45f4bdf7a26edc413</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGqvnhc8b83H7mZzLLW2QqUF9RzSfNiU3aQmLVJP_gR_o7_ElBX15iWTmXnemeEF4BLBIYIQXwvl2yGGuICooPUJ6GHEyhxBik7__M_BIMYNhDAlhBW0B5bLRsTWu8_3j4lbCye1ysY2yH0jQrb06bVvYme9y2b2eZ2omQgJtzKbaqdD1zLBt9mDbaz07gKcGdFEPfiOffB0O3kcz_L5Yno3Hs1zma6sc6oqUytlsEYEr5jEuhSiWqm6LlOFllILhmhFsdbKsFIWpSlWylCBK61kgUgfXHVzt8G_7HXc8Y3fB5dWcoIwYZiQgiRq2FEy-BiDNnwbbCvCgSPIj8bxo3H8x7gkYJ3g1Tb68A_NRzeL-1_tF6A9dLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123923343</pqid></control><display><type>article</type><title>Plasmon‐Enhanced Circular Polarization High‐Harmonic Generation from Silicon</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ren, Sheng ; Chen, Danni ; Wang, Shiqi ; Chen, Yongqiang ; Hu, Rui ; Qu, Junle ; Liu, Liwei</creator><creatorcontrib>Ren, Sheng ; Chen, Danni ; Wang, Shiqi ; Chen, Yongqiang ; Hu, Rui ; Qu, Junle ; Liu, Liwei</creatorcontrib><description>High harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that have been observed in the 2D crystal medium. In addition, the geometric symmetry of the coplanar atom distribution is related to the orientation of cubic crystals. This implies that only the polarization along a specific crystal orientation can achieve a selection of high‐harmonic polarization states. However, this is a very weak process in cubic crystals owing to the attenuation of crystal anisotropy to circularly polarized light and the dependence of the electron transition rate on the crystal orientation. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process. The harmonic emission is more than ten times brighter than that without nanoantennas and conformed to the selection rules for high harmonics. The research results offer a new approach for deep­ultraviolet space filtering, carrier control, and the development of compact extreme­ultraviolet light sources. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that are observed in the 2D crystal medium. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401478</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Atomic structure ; Circular polarization ; Crystal structure ; Electron transitions ; Extreme values ; Harmonic generations ; high‐harmonic generation ; Incident light ; Light sources ; Nanoantennas ; plasmon nanoantennas ; Polarized light ; rotation symmetry ; Rotational states ; Silicon ; Symmetry</subject><ispartof>Advanced optical materials, 2024-11, Vol.12 (31), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2028-7d6f8ddf2e132b9c2e5aa6bd885e1375cea917672eedf95c45f4bdf7a26edc413</cites><orcidid>0000-0002-4593-665X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202401478$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202401478$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Ren, Sheng</creatorcontrib><creatorcontrib>Chen, Danni</creatorcontrib><creatorcontrib>Wang, Shiqi</creatorcontrib><creatorcontrib>Chen, Yongqiang</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Liu, Liwei</creatorcontrib><title>Plasmon‐Enhanced Circular Polarization High‐Harmonic Generation from Silicon</title><title>Advanced optical materials</title><description>High harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that have been observed in the 2D crystal medium. In addition, the geometric symmetry of the coplanar atom distribution is related to the orientation of cubic crystals. This implies that only the polarization along a specific crystal orientation can achieve a selection of high‐harmonic polarization states. However, this is a very weak process in cubic crystals owing to the attenuation of crystal anisotropy to circularly polarized light and the dependence of the electron transition rate on the crystal orientation. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process. The harmonic emission is more than ten times brighter than that without nanoantennas and conformed to the selection rules for high harmonics. The research results offer a new approach for deep­ultraviolet space filtering, carrier control, and the development of compact extreme­ultraviolet light sources. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that are observed in the 2D crystal medium. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process.</description><subject>Anisotropy</subject><subject>Atomic structure</subject><subject>Circular polarization</subject><subject>Crystal structure</subject><subject>Electron transitions</subject><subject>Extreme values</subject><subject>Harmonic generations</subject><subject>high‐harmonic generation</subject><subject>Incident light</subject><subject>Light sources</subject><subject>Nanoantennas</subject><subject>plasmon nanoantennas</subject><subject>Polarized light</subject><subject>rotation symmetry</subject><subject>Rotational states</subject><subject>Silicon</subject><subject>Symmetry</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGqvnhc8b83H7mZzLLW2QqUF9RzSfNiU3aQmLVJP_gR_o7_ElBX15iWTmXnemeEF4BLBIYIQXwvl2yGGuICooPUJ6GHEyhxBik7__M_BIMYNhDAlhBW0B5bLRsTWu8_3j4lbCye1ysY2yH0jQrb06bVvYme9y2b2eZ2omQgJtzKbaqdD1zLBt9mDbaz07gKcGdFEPfiOffB0O3kcz_L5Yno3Hs1zma6sc6oqUytlsEYEr5jEuhSiWqm6LlOFllILhmhFsdbKsFIWpSlWylCBK61kgUgfXHVzt8G_7HXc8Y3fB5dWcoIwYZiQgiRq2FEy-BiDNnwbbCvCgSPIj8bxo3H8x7gkYJ3g1Tb68A_NRzeL-1_tF6A9dLQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ren, Sheng</creator><creator>Chen, Danni</creator><creator>Wang, Shiqi</creator><creator>Chen, Yongqiang</creator><creator>Hu, Rui</creator><creator>Qu, Junle</creator><creator>Liu, Liwei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4593-665X</orcidid></search><sort><creationdate>20241101</creationdate><title>Plasmon‐Enhanced Circular Polarization High‐Harmonic Generation from Silicon</title><author>Ren, Sheng ; Chen, Danni ; Wang, Shiqi ; Chen, Yongqiang ; Hu, Rui ; Qu, Junle ; Liu, Liwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2028-7d6f8ddf2e132b9c2e5aa6bd885e1375cea917672eedf95c45f4bdf7a26edc413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Atomic structure</topic><topic>Circular polarization</topic><topic>Crystal structure</topic><topic>Electron transitions</topic><topic>Extreme values</topic><topic>Harmonic generations</topic><topic>high‐harmonic generation</topic><topic>Incident light</topic><topic>Light sources</topic><topic>Nanoantennas</topic><topic>plasmon nanoantennas</topic><topic>Polarized light</topic><topic>rotation symmetry</topic><topic>Rotational states</topic><topic>Silicon</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Ren, Sheng</creatorcontrib><creatorcontrib>Chen, Danni</creatorcontrib><creatorcontrib>Wang, Shiqi</creatorcontrib><creatorcontrib>Chen, Yongqiang</creatorcontrib><creatorcontrib>Hu, Rui</creatorcontrib><creatorcontrib>Qu, Junle</creatorcontrib><creatorcontrib>Liu, Liwei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Sheng</au><au>Chen, Danni</au><au>Wang, Shiqi</au><au>Chen, Yongqiang</au><au>Hu, Rui</au><au>Qu, Junle</au><au>Liu, Liwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon‐Enhanced Circular Polarization High‐Harmonic Generation from Silicon</atitle><jtitle>Advanced optical materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>31</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>High harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that have been observed in the 2D crystal medium. In addition, the geometric symmetry of the coplanar atom distribution is related to the orientation of cubic crystals. This implies that only the polarization along a specific crystal orientation can achieve a selection of high‐harmonic polarization states. However, this is a very weak process in cubic crystals owing to the attenuation of crystal anisotropy to circularly polarized light and the dependence of the electron transition rate on the crystal orientation. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process. The harmonic emission is more than ten times brighter than that without nanoantennas and conformed to the selection rules for high harmonics. The research results offer a new approach for deep­ultraviolet space filtering, carrier control, and the development of compact extreme­ultraviolet light sources. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that are observed in the 2D crystal medium. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401478</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4593-665X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-11, Vol.12 (31), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_3123923343
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Atomic structure
Circular polarization
Crystal structure
Electron transitions
Extreme values
Harmonic generations
high‐harmonic generation
Incident light
Light sources
Nanoantennas
plasmon nanoantennas
Polarized light
rotation symmetry
Rotational states
Silicon
Symmetry
title Plasmon‐Enhanced Circular Polarization High‐Harmonic Generation from Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon%E2%80%90Enhanced%20Circular%20Polarization%20High%E2%80%90Harmonic%20Generation%20from%20Silicon&rft.jtitle=Advanced%20optical%20materials&rft.au=Ren,%20Sheng&rft.date=2024-11-01&rft.volume=12&rft.issue=31&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401478&rft_dat=%3Cproquest_cross%3E3123923343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123923343&rft_id=info:pmid/&rfr_iscdi=true