Plasmon‐Enhanced Circular Polarization High‐Harmonic Generation from Silicon

High harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-11, Vol.12 (31), p.n/a
Hauptverfasser: Ren, Sheng, Chen, Danni, Wang, Shiqi, Chen, Yongqiang, Hu, Rui, Qu, Junle, Liu, Liwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High harmonics of circular polarization can be directly generated by monochromatic circularly polarized incident light owing to the high density and stable structure of crystal media. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that have been observed in the 2D crystal medium. In addition, the geometric symmetry of the coplanar atom distribution is related to the orientation of cubic crystals. This implies that only the polarization along a specific crystal orientation can achieve a selection of high‐harmonic polarization states. However, this is a very weak process in cubic crystals owing to the attenuation of crystal anisotropy to circularly polarized light and the dependence of the electron transition rate on the crystal orientation. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process. The harmonic emission is more than ten times brighter than that without nanoantennas and conformed to the selection rules for high harmonics. The research results offer a new approach for deep­ultraviolet space filtering, carrier control, and the development of compact extreme­ultraviolet light sources. If the arrangement of multiple coplanar atoms in the unit structure of the crystal exhibits rotational symmetry, the polarization state of the high harmonics generated from the crystal follows specific selection rules that are observed in the 2D crystal medium. In this study, plasmonic nanoantennas are designed on silicon crystal films to enhance this process.
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202401478