UV-C disinfection of a minibus
Many people have been infected with the coronavirus (COVID-19), which is widespread at present. Disinfection is necessary to reduce the risk of virus outbreak from use of contaminated equipment. Ultraviolet type-c (UV-C) has a wavelength between 100-280 nm. Although UV-C is a danger if people receiv...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many people have been infected with the coronavirus (COVID-19), which is widespread at present. Disinfection is necessary to reduce the risk of virus outbreak from use of contaminated equipment. Ultraviolet type-c (UV-C) has a wavelength between 100-280 nm. Although UV-C is a danger if people receive large doses, it can eliminate pathogens. Thus, UV-C is popularly used for sterilization in UV-C automatic sterilization machines and sterilization in medical clinics. UV-C used for disinfection has wavelengths of 222 and 254 nm, which reduce microbial loads by up to 99%. It is a technology that is clean, safe and produces no residues. However, previous research has not considered the use of UV-C for disinfection of minibuses, which is a new and highly efficient technology. The current research aims to design a UV-C disinfection system for minibuses using a computer program. The effects of power and duration of UV-C on its irradiance distribution and UV-C irradiance values in a minibus are investigated. An experimental study with a UV-C lamp having a 254 nm wavelength in a UV-C cabinet was performed to validate the results of our simulations. A UV-C meter was used to measure irradiance with different durations in a cabinet and compare this data with simulation results. The experimental results show good agreement with our simulation. The average difference between the simulation and experimental results was 4.46%. The results in this study indicate that increased power and duration of UV-C resulted in faster and more efficient disinfection. The study results can be applied to a database of UV-C emission simulations and used to design disinfection systems for other types of vehicles. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0240107 |