Fast Convex Optimization via Differential Equation with Hessian-Driven Damping and Tikhonov Regularization
In this paper, we consider a class of second-order ordinary differential equations with Hessian-driven damping and Tikhonov regularization, which arises from the minimization of a smooth convex function in Hilbert spaces. Inspired by Attouch et al. (J Differ Equ 261:5734–5783, 2016), we establish th...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2024-10, Vol.203 (1), p.42-82 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider a class of second-order ordinary differential equations with Hessian-driven damping and Tikhonov regularization, which arises from the minimization of a smooth convex function in Hilbert spaces. Inspired by Attouch et al. (J Differ Equ 261:5734–5783, 2016), we establish that the function value along the solution trajectory converges to the optimal value, and prove that the convergence rate can be as fast as
o
(
1
/
t
2
)
. By constructing proper energy function, we prove that the trajectory strongly converges to a minimizer of the objective function of minimum norm. Moreover, we propose a gradient-based optimization algorithm based on numerical discretization, and demonstrate its effectiveness in numerical experiments. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-024-02462-x |